Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > SEMATECH Reports Synergistic Advances in New Materials and Process Innovation for Emerging Semiconductor Devices

Abstract:
To continue the industry's historical trend of performance scaling, SEMATECH experts reported on integrated approaches to CMOS logic and memory device technology and 3D TSV (through silicon via) manufacturing at the International Symposium on VLSI Technology, System and Applications (VLSI-TSA) on April 26-28, 2010.

SEMATECH Reports Synergistic Advances in New Materials and Process Innovation for Emerging Semiconductor Devices

Taiwan | Posted on May 1st, 2010

In a series of eight research papers, an international team of SEMATECH researchers addressed the various challenges and process solutions for extending advanced memory and logic technologies. The papers, selected from hundreds of submissions, outlined leading-edge research in areas such as high-k/metal gate (HKMG) materials, flash memory, and planar and non-planar CMOS technologies.

"The processes, materials, and device structures that will define next generations of CMOS and non-CMOS technologies, and how they function when combined as a module, is of critical importance to enhance functionality and performance in future generations of devices," said Raj Jammy, vice president of advanced technologies. "The research that was presented at VLSI-TSA demonstrates SEMATECH's leadership and innovative thinking in new materials, processes and concepts that enable CMOS scaling and pave the way for emerging technologies."

In one potentially industry-changing technology, Sitaram Arkalgud, director of SEMATECH's 3D interconnect program, described a via-mid approach to TSV technology on a 300mm platform. Arkalgud discussed process development, module integration and the overall manufacturability outlook for via-mid TSV, a front-end process which allows a reduction in the interconnect length as well as an increase in bandwidth between the stacked chips, resulting in lower power, higher performance, and increased device density.

Additionally, SEMATECH front end process technologists reported technical advances in the following areas:

* Exploring alternative high-k dielectrics to address challenges in gate-first and gate-last technology for the 28 nm node and beyond. SEMATECH reported a higher performance in a silicon germanium (SiGe) P-channel MOSFETs (pFET) when integrated into a dual channel single metal gate CMOS. In a gate-last approach, SEMATECH results showed a low temperature process that achieves the CMOS voltage target for both the N channel and the P channel suitable for 20 nm generation.
* Determining that the extremely high energy and spatial resolution of synchrotron X-ray photoemission spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS) techniques applied to advanced hafnium-based dielectric film systems have revealed subtle and significant chemical state and crystal phase transitions that give rise to the mechanisms responsible for improved device performance
* Identifying vacuum ultraviolet (VuV) reflectivity as an in-line metrology solution for characterizing sub-nm Al2O3 and La2O3 capping layers on advanced high-k film stacks
* Exploring the promise of FinFETs as candidates for continuing transistor scaling, even though measuring these devices presents challenges, particularly for understanding the dielectric interface, since the Si body on these devices is not available for probing. By changing from a transistor to a gated diode, SEMATECH determined that this problem can be avoided and robust, meaningful measurements can be obtained.
* Conducting a thorough study of TANOS structures that highlighted differences in how the degradation of program, erase, and retention modes are dominated by different mechanisms
* Through a systematic evaluation of the thermal budget dependence of the structure and property of III-V MOSFETs, demonstrating reduced external resistance with laser anneals - a critical building block for scaling III-V MOSFETs
* Describing experimental observations of a strained SiGe quantum well (QW) pMOSFET, showing that it is a promising candidate for CMOS technology at 22 nm node and beyond
* Highlighting the necessity of biaxial strain engineering to boost the performance of FinFETs through reducing parasitic resistance as the industry scales past the 22 nm node

The International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA) is sponsored by the Institute of Electrical and Electronics Engineers, or IEEE, a leading professional association for the advancement of technology in association with Taiwan's Industrial Technology Research Institute (ITRI). VLSI-TSA is one of many industry forums SEMATECH uses to collaborate with scientists and engineers from corporations, universities and other research institutions, many of whom are research partners.

####

About SEMATECH
For 20 years, SEMATECH® (www.sematech.org), the international consortium of leading semiconductor manufacturers, has set global direction, enabled flexible collaboration, and bridged strategic R&D to manufacturing. Today, we continue accelerating the next technology revolution with our nanoelectronics and emerging technology partners.

For more information, please click here

Contacts:
Erica McGill
SEMATECH Media Relations
257 Fuller Road, Suite 2200
Albany, NY 12203
o: 518-649-1041
m: 518-487-8256

Copyright © SEMATECH

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Chip Technology

'Exotic' material is like a switch when super thin April 18th, 2014

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

Obducat has launched a new generation of SINDRE® Nano Imprint production system April 11th, 2014

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014

Memory Technology

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

First principles approach to creating new materials: Solid-state chemistry and theoretical physics combined to help discover new materials with useful properties April 8th, 2014

Domain walls in nanowires cleverly set in motion: Important prerequisite for the development of nano-components for data storage and sensor technology / Publication in Nature Communications April 8th, 2014

Nanoelectronics

Better solar cells, better LED light and vast optical possibilities April 12th, 2014

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Preview of Hands-on Nanotechnology Demos at ‘Chemistry of Wine’ Fundraiser to Show Nanotech Magic April 8th, 2014

Announcements

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE