Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NIST Develops 'Dimmer Switch' for Superconducting Quantum Computing

Colorized micrograph of superconducting circuit used in NIST quantum computing research. The chip combines a quantum bit (pink) for storing quantum information, a quantum bus (green) for transporting information, and a switch (purple) that "tunes" interactions between the other two components. Credit: M.S. Allman/NIST
Colorized micrograph of superconducting circuit used in NIST quantum computing research. The chip combines a quantum bit (pink) for storing quantum information, a quantum bus (green) for transporting information, and a switch (purple) that "tunes" interactions between the other two components. Credit: M.S. Allman/NIST

Abstract:
Scientists at the National Institute of Standards and Technology (NIST) have developed the first "dimmer switch" for a superconducting circuit linking a quantum bit (qubit) and a quantum bus—promising technologies for storing and transporting information in future quantum computers. The NIST switch is a new type of control device that can "tune" interactions between these components and potentially could speed up the development of a practical quantum computer.

NIST Develops 'Dimmer Switch' for Superconducting Quantum Computing

Gaithersburg, MD | Posted on April 29th, 2010

Quantum computers, if they can be built, would use the curious rules of quantum mechanics to solve certain problems that are now intractable, such as breaking today's most widely used data encryption codes, or running simulations of quantum systems that could unlock the secrets of high-temperature superconductors. Unlike many competing systems that store and transport information using the quantum properties of individual atoms, superconducting qubits use a "super flow" of oscillating electrical current to store information in the form of microwave energy. Superconducting quantum devices are fabricated like today's silicon processor chips and may be easy to manufacture at the large scales needed for computation.

As described in a forthcoming paper in Physical Review Letters,* the new NIST switch can reliably tune the interaction strength or rate between the two types of circuits—a qubit and a bus—from 100 megahertz to nearly zero. The advance could enable researchers to flexibly control the interactions between many circuit elements in an intricate network as would be needed in a quantum computer of a practical size.

Other research groups have demonstrated switches for two or three superconducting qubits coupled together, but the NIST switch is the first to produce predictable quantum behavior over time with the controllable exchange of an individual microwave photon (particle of light) between a qubit and a resonant cavity. The resonant cavity serves as what engineers call a "bus"—a channel for moving information from one section of the computer to another. "We have three different elements all working together, coherently (in concert with each other) and without losing a lot of energy," says the CU-Boulder graduate student Michael (Shane) Allman who performed the experiments with NIST physicist Ray Simmonds, the principal investigator.

All three components (qubit, switch, and cavity) were made of aluminum in an overlapping pattern on a sapphire chip (see image). The switch is a radio-frequency SQUID (superconducting quantum interference device), a magnetic field sensor that acts like a tunable transformer. The circuit is created with a voltage pulse that places one unit of energy—a single microwave photon—in the qubit. By tuning a magnetic field applied to the SQUID, scientists can alter the coupling energy or transfer rate of the single photon between the qubit and cavity. The researchers watch this photon slosh back and forth at a rate they can now adjust with a knob.

The switch research was supported in part by the Army Research Office. Simmonds's group previously demonstrated the first superconducting quantum bus between qubits (see "Digital Cable Goes Quantum: NIST Debuts Superconducting Quantum Computing Cable," www.nist.gov/public_affairs/releases/quantum_cable.html, which also describes how the superconducting qubits operate).

* M.S. Allman, F. Altomare, J.D. Whittaker, K. Cicak, D. Li, A. Sirois, J. Strong, J.D. Teufel, R.W. Simmonds. 2010. rf-SQUID-Mediated Coherent Tunable Coupling Between a Superconducting Phase Qubit and a Lumped Element Resonator. Physical Review Letters. Forthcoming.

####

About NIST
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Commerce Department.

For more information, please click here

Contacts:
Laura Ost
303-497-4880

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Possible Futures

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Nanotechnology Drug Delivery Market in the US 2012-2016 : Latest Report Available by Radiant Insights, Inc March 16th, 2015

Quantum Computing

Quantum compute this -- WSU mathematicians build code to take on toughest of cyber attacks: Revamped knapsack code offers online security for the future March 26th, 2015

Building shape inspires new material discovery March 24th, 2015

Quantum cause and effect March 23rd, 2015

Superfast computers a step closer as a silicon chip's quantum capabilities are improved March 20th, 2015

Announcements

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Quantum nanoscience

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Thousands of atoms entangled with a single photon: Result could make atomic clocks more accurate March 26th, 2015

Bar-Ilan U. researchers identify 'tipping point' between quantum and classical worlds: Study sheds new light on 'spooky' quantum optics March 24th, 2015

Nanospheres cooled with light to explore the limits of quantum physics March 17th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE