Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanodots Breakthrough May Lead To ‘A Library On One Chip’

Abstract:
A researcher at North Carolina State University has developed a computer chip that can store an unprecedented amount of data - enough to hold an entire library's worth of information on a single chip.

By Matt Shipman

Nanodots Breakthrough May Lead To ‘A Library On One Chip’

Raleigh, NC | Posted on April 28th, 2010

The new chip stems from a breakthrough in the use of nanodots, or nanoscale magnets, and represents a significant advance in computer-memory technology.

"We have created magnetic nanodots that store one bit of information on each nanodot, allowing us to store over one billion pages of information in a chip that is one square inch," says Dr. Jay Narayan, the John C. Fan Distinguished Chair Professor of Materials Science and Engineering at NC State and author of the research.

The breakthrough is that these nanodots are made of single, defect-free crystals, creating magnetic sensors that are integrated directly into a silicon electronic chip. These nanodots, which can be made uniformly as small as six nanometers in diameter, are all precisely oriented in the same way - allowing programmers to reliably read and write data to the chips.

The chips themselves can be manufactured cost-effectively, but the next step is to develop magnetic packaging that will enable users to take advantage of the chips - using something, such as laser technology, that can effectively interact with the nanodots.

The research, which was funded by the National Science Foundation, was presented as an invited talk April 7 at the 2011 Materials Research Society Spring Meeting in San Francisco.

NC State's Department of Materials Science and Engineering is part of the university's College of Engineering.

Note to editors: The study abstract follows.

"Self Assembly of epitaxial magnetic nanostructures"

Author: J. Narayan, North Carolina State University

Presented: April 7, 2010, 2011 MRS Spring Meeting, San Francisco

Abstract: This talk focuses on self-assembly processing of magnetic nanodots such as Ni, Ni-Pt, Fe-Pt during thin film growth by pulsed laser deposition. This self-assembly can be extended from two-dimensional to three-dimensional structures by controlling stresses/strains in the layers of composite structures. Magnetic properties are found to be a strong function of size, shape, orientation and chemical ordering. The primary focus of this talk is on epitaxial orientation of nanodots and integration of microelectronic/nanoelectronic devices on Si(100)(1). The epitaxial orientation is controlled by TiN buffer layer grown epitaxially on Si(100), and results compared with randomly oriented nanodots formed using amorphous alumina buffer. The epitaxial structures (Ni, Ni-Pt, Fe-Pt)/TiN/Si(100) involve lattice misfit ranging from 8% to 22%, which can be handled by our domain epitaxy paradigm (2). The DME paradigm involves matching of integral multiples of lattice planes across the interface, as the strain relaxation occurs by dislocations which represent either missing or extra planes (2). We discuss the optimization of structure and atomic ordering in Ni-Pt and FePt structures and correlations with magnetic properties by controlling thin film processing parameters and annealing conditions.

####

For more information, please click here

Contacts:
Matt Shipman
News Services
919.515.6386

Dr. Jay Narayan
919.515.7874

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Possible Futures

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Harris & Harris Group Portfolio Company D-Wave Systems Announces 1,000 Qubit Processor and is Discussed in the Economist June 23rd, 2015

Global Nanoclays Market Analysis, Size, Growth, Trends And Segment Forecasts, 2015 To 2022: Grand View Research, Inc June 15th, 2015

Healthcare Nanotechnology (Nanomedicine) Market Size To 2020 June 5th, 2015

Academic/Education

Oxford Instruments’ TritonXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Rice University boots up powerful microscopes: New electron microscopes will capture images at subnanometer resolution June 29th, 2015

Six top Catalan research centres constitute ‘The Barcelona Institute of Science and Technology’ to pursue a joint scientific endeavour June 27th, 2015

Lancaster University revolutionary quantum technology research receives funding boost June 22nd, 2015

Chip Technology

Nanometrics to Announce Second Quarter Financial Results on July 23, 2015 July 2nd, 2015

The quantum middle man July 2nd, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

Emergence of a 'devil's staircase' in a spin-valve system July 1st, 2015

Quantum Computing

The quantum middle man July 2nd, 2015

Freezing single atoms to absolute zero with microwaves brings quantum technology closer: Atoms frozen to absolute zero using microwaves July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

Nanoelectronics

New technology using silver may hold key to electronics advances July 2nd, 2015

Exagan Raises €5.7 Million to Produce High-efficiency GaN-on-Silicon Power-switching Devices on 200mm Wafers: Leti-and-Soitec Spinout Focused on Becoming Leading European Source Of GaN Devices for Solar, Automotive, Telecoms and Infrastructure June 25th, 2015

Nanowires could be the LEDs of the future June 25th, 2015

Leti to Present Solutions to New Applications Using 3D Technologies at SEMICON West LetiDay Event, July 14: Leti Experts also Will Speak at TechXPOT Session on MEMS and STS Session on Lithography Cost-and-Productivity Issues Below 14nm June 22nd, 2015

Announcements

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Quantum Dots/Rods

Producing spin-entangled electrons July 2nd, 2015

Philips Introduces Quantum Dot TV with Color IQ™ Technology from QD Vision: Manufacturer is first to offer quantum dot displays for both TVs and monitors June 30th, 2015

Biomanufacturing of CdS quantum dots: A bacterial method for the low-cost, environmentally-friendly synthesis of aqueous soluble quantum dot nanocrystals June 24th, 2015

Iranian Researchers Model, Design Optical Switches June 13th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project