Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanodots Breakthrough May Lead To ‘A Library On One Chip’

Abstract:
A researcher at North Carolina State University has developed a computer chip that can store an unprecedented amount of data - enough to hold an entire library's worth of information on a single chip.

By Matt Shipman

Nanodots Breakthrough May Lead To ‘A Library On One Chip’

Raleigh, NC | Posted on April 28th, 2010

The new chip stems from a breakthrough in the use of nanodots, or nanoscale magnets, and represents a significant advance in computer-memory technology.

"We have created magnetic nanodots that store one bit of information on each nanodot, allowing us to store over one billion pages of information in a chip that is one square inch," says Dr. Jay Narayan, the John C. Fan Distinguished Chair Professor of Materials Science and Engineering at NC State and author of the research.

The breakthrough is that these nanodots are made of single, defect-free crystals, creating magnetic sensors that are integrated directly into a silicon electronic chip. These nanodots, which can be made uniformly as small as six nanometers in diameter, are all precisely oriented in the same way - allowing programmers to reliably read and write data to the chips.

The chips themselves can be manufactured cost-effectively, but the next step is to develop magnetic packaging that will enable users to take advantage of the chips - using something, such as laser technology, that can effectively interact with the nanodots.

The research, which was funded by the National Science Foundation, was presented as an invited talk April 7 at the 2011 Materials Research Society Spring Meeting in San Francisco.

NC State's Department of Materials Science and Engineering is part of the university's College of Engineering.

Note to editors: The study abstract follows.

"Self Assembly of epitaxial magnetic nanostructures"

Author: J. Narayan, North Carolina State University

Presented: April 7, 2010, 2011 MRS Spring Meeting, San Francisco

Abstract: This talk focuses on self-assembly processing of magnetic nanodots such as Ni, Ni-Pt, Fe-Pt during thin film growth by pulsed laser deposition. This self-assembly can be extended from two-dimensional to three-dimensional structures by controlling stresses/strains in the layers of composite structures. Magnetic properties are found to be a strong function of size, shape, orientation and chemical ordering. The primary focus of this talk is on epitaxial orientation of nanodots and integration of microelectronic/nanoelectronic devices on Si(100)(1). The epitaxial orientation is controlled by TiN buffer layer grown epitaxially on Si(100), and results compared with randomly oriented nanodots formed using amorphous alumina buffer. The epitaxial structures (Ni, Ni-Pt, Fe-Pt)/TiN/Si(100) involve lattice misfit ranging from 8% to 22%, which can be handled by our domain epitaxy paradigm (2). The DME paradigm involves matching of integral multiples of lattice planes across the interface, as the strain relaxation occurs by dislocations which represent either missing or extra planes (2). We discuss the optimization of structure and atomic ordering in Ni-Pt and FePt structures and correlations with magnetic properties by controlling thin film processing parameters and annealing conditions.

####

For more information, please click here

Contacts:
Matt Shipman
News Services
919.515.6386

Dr. Jay Narayan
919.515.7874

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Feynman Prize Winners Announced! April 26th, 2015

New ASTM Standards Will Help Educate Present and Future Nanotechnology Workforces April 26th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

QD Vision Wins 2015 Bronze Edison Award for Color IQ™ Quantum Dot Technology April 26th, 2015

Possible Futures

Printing Silicon on Paper, with Lasers April 21st, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Academic/Education

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Iranian Female Professor Awarded UNESCO Medal in Nanoscience April 20th, 2015

JPK reports on the use of the NanoWizard® 3 AFM system at the Hebrew University of Jerusalem April 14th, 2015

UK National Graphene Institute Selects Bruker as Official Partner: World-Leading Graphene Research Facility Purchases Multiple Bruker AFMs April 7th, 2015

Chip Technology

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Drexel materials scientists putting a new spin on computing memory April 22nd, 2015

Printing Silicon on Paper, with Lasers April 21st, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Quantum Computing

NIST tightens the bounds on the quantum information 'speed limit' April 13th, 2015

Electrical control of quantum bits in silicon paves the way to large quantum computers: Breakthrough by Australian-led team should make the construction of large-scale quantum computers more affordable April 11th, 2015

OU physicists first to create new molecule with record-setting dipole moment April 4th, 2015

Quantum teleportation on a chip: A significant step towards ultra-high speed quantum computers April 1st, 2015

Nanoelectronics

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Announcements

Feynman Prize Winners Announced! April 26th, 2015

New ASTM Standards Will Help Educate Present and Future Nanotechnology Workforces April 26th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

QD Vision Wins 2015 Bronze Edison Award for Color IQ™ Quantum Dot Technology April 26th, 2015

Quantum Dots/Rods

QD Vision Wins 2015 Bronze Edison Award for Color IQ™ Quantum Dot Technology April 26th, 2015

QD Vision Expands Product Line with Two-Millimeter Color LCD Display Optic: Color IQ™ Optic Enables Full-Color Gamut for Ultra-Thin Displays and All-in-One Computers April 16th, 2015

Promising future of quantum dots explored in conference: ‘20 Years of Quantum Dots at Los Alamos’ runs April 12-16 April 13th, 2015

Next important step toward quantum computer: Scientists at the University of Bonn have succeeded in linking 2 different quantum systems March 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project