Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanodots Breakthrough May Lead To ĎA Library On One Chipí

Abstract:
A researcher at North Carolina State University has developed a computer chip that can store an unprecedented amount of data - enough to hold an entire library's worth of information on a single chip.

By Matt Shipman

Nanodots Breakthrough May Lead To ĎA Library On One Chipí

Raleigh, NC | Posted on April 28th, 2010

The new chip stems from a breakthrough in the use of nanodots, or nanoscale magnets, and represents a significant advance in computer-memory technology.

"We have created magnetic nanodots that store one bit of information on each nanodot, allowing us to store over one billion pages of information in a chip that is one square inch," says Dr. Jay Narayan, the John C. Fan Distinguished Chair Professor of Materials Science and Engineering at NC State and author of the research.

The breakthrough is that these nanodots are made of single, defect-free crystals, creating magnetic sensors that are integrated directly into a silicon electronic chip. These nanodots, which can be made uniformly as small as six nanometers in diameter, are all precisely oriented in the same way - allowing programmers to reliably read and write data to the chips.

The chips themselves can be manufactured cost-effectively, but the next step is to develop magnetic packaging that will enable users to take advantage of the chips - using something, such as laser technology, that can effectively interact with the nanodots.

The research, which was funded by the National Science Foundation, was presented as an invited talk April 7 at the 2011 Materials Research Society Spring Meeting in San Francisco.

NC State's Department of Materials Science and Engineering is part of the university's College of Engineering.

Note to editors: The study abstract follows.

"Self Assembly of epitaxial magnetic nanostructures"

Author: J. Narayan, North Carolina State University

Presented: April 7, 2010, 2011 MRS Spring Meeting, San Francisco

Abstract: This talk focuses on self-assembly processing of magnetic nanodots such as Ni, Ni-Pt, Fe-Pt during thin film growth by pulsed laser deposition. This self-assembly can be extended from two-dimensional to three-dimensional structures by controlling stresses/strains in the layers of composite structures. Magnetic properties are found to be a strong function of size, shape, orientation and chemical ordering. The primary focus of this talk is on epitaxial orientation of nanodots and integration of microelectronic/nanoelectronic devices on Si(100)(1). The epitaxial orientation is controlled by TiN buffer layer grown epitaxially on Si(100), and results compared with randomly oriented nanodots formed using amorphous alumina buffer. The epitaxial structures (Ni, Ni-Pt, Fe-Pt)/TiN/Si(100) involve lattice misfit ranging from 8% to 22%, which can be handled by our domain epitaxy paradigm (2). The DME paradigm involves matching of integral multiples of lattice planes across the interface, as the strain relaxation occurs by dislocations which represent either missing or extra planes (2). We discuss the optimization of structure and atomic ordering in Ni-Pt and FePt structures and correlations with magnetic properties by controlling thin film processing parameters and annealing conditions.

####

For more information, please click here

Contacts:
Matt Shipman
News Services
919.515.6386

Dr. Jay Narayan
919.515.7874

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Stiffness matters February 23rd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Possible Futures

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

Academic/Education

LuleŚ University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Chip Technology

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Quantum Computing

Developing reliable quantum computers February 22nd, 2018

Unconventional superconductor may be used to create quantum computers of the future: They have probably succeeded in creating a topological superconductor February 19th, 2018

New silicon chip for helping build quantum computers and securing our information February 8th, 2018

Quantum algorithm could help AI think faster: Researchers in Singapore, Switzerland and the UK present a quantum speed-up for machine learning February 2nd, 2018

Nanoelectronics

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Vanadium dioxyde: A revolutionary material for tomorrow's electronics: Phase-chance switch can now be performed at higher temperatures February 5th, 2018

Measuring the temperature of two-dimensional materials at the atomic level February 3rd, 2018

Viewing atomic structures of dopant atoms in 3-D relating to electrical activity in a semiconductor December 28th, 2017

Announcements

Stiffness matters February 23rd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Quantum Dots/Rods

Moving nanoparticles using light and magnetic fields January 25th, 2018

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Quantum communications bend to our needs: By changing the wavelengths of entangled photons to those used in telecommunications, researchers see quantum technology take a major leap forward September 28th, 2017

Band Gaps, Made to Order: Engineers create atomically thin superlattice materials with precision September 26th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project