Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Recycling nanoparticles

Temperature-induced separation and dispersion of cadmium sulphide nanoparticles. Image by Julian Eastoe
Temperature-induced separation and dispersion of cadmium sulphide nanoparticles. Image by Julian Eastoe

Abstract:
Some nanoparticles are more precious than gold, so being able to recycle them would offer manufacturers important cost savings.

Recycling nanoparticles

UK | Posted on April 28th, 2010

Professor Julian Eastoe at the University of Bristol, and colleagues, report the development of a special type of microemulsion - a mixture of oil and water (mayonnaise is an edible emulsion) - that may make it easier for manufacturers to recover, recycle, and reuse nanoparticles.

In laboratory tests using cadmium and zinc nanoparticles, they demonstrate how the oil and water in the microemulsion separated into two layers when heated. One layer contained the nanoparticles that could be recovered and the other contained none.

Importantly, the team reports, the recovered particles retain their shape and chemical properties, which is crucial for their reuse. The new method could speed application of nanotechnology in new generations of solar cells, flexible electronic displays and various other products.

Julian Eastoe said, "Recovering and recycling nanoparticles is especially difficult because they tend to form complex, hard-to-separate mixtures with other substances. We have designed a new kind of solvent which is perfectly suited to nanotechnology.

"A significant advantage of this method over more traditional approaches is that it is much milder on the particles, thereby preserving their structure and stability, and permitting recyclability. Additionally, it allows us to separate and recover the nanoparticles Ďat the flick of a switch', simply by changing the temperature."

This simple process may potentially find applications in cleanup and purification technologies in order to recover, redisperse and reuse valuable nanomaterials. Without this new development, manufacturing processes that take advantage of the unusual properties of nanoparticles might become prohibitively expensive.

The study appears in Langmuir, a bi-weekly journal of the American Chemical Society.

####

For more information, please click here

Copyright © University of Bristol

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Materials/Metamaterials

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Corrosion in real time: UCSB researchers get a nanoscale glimpse of crevice and pitting corrosion as it happens September 14th, 2017

Announcements

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project