Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Physicists capture first images of atomic spin

The different shape and appearance of these individual cobalt atoms is caused by the different spin directions. (Image courtesy Saw-Wai Hla, Ohio University)
The different shape and appearance of these individual cobalt atoms is caused by the different spin directions. (Image courtesy Saw-Wai Hla, Ohio University)

Abstract:
Discovery supports development of nanoscale magnetic storage devices

Physicists capture first images of atomic spin

Athens, OH | Posted on April 28th, 2010

Though scientists argue that the emerging technology of spintronics may trump conventional electronics for building the next generation of faster, smaller, more efficient computers and high-tech devices, no one has actually seen the spin—a quantum mechanical property of electrons—in individual atoms until now.

In a study published as an Advance Online Publication in the journal Nature Nanotechnology on Sunday, physicists at Ohio University and the University of Hamburg in Germany present the first images of spin in action.

The researchers used a custom-built microscope with an iron-coated tip to manipulate cobalt atoms on a plate of manganese. Through scanning tunneling microscopy, the team repositioned individual cobalt atoms on a surface that changed the direction of the electrons' spin. Images captured by the scientists showed that the atoms appeared as a single protrusion if the spin direction was upward, and as double protrusions with equal heights when the spin direction was downward.

The study suggests that scientists can observe and manipulate spin, a finding that may impact future development of nanoscale magnetic storage, quantum computers and spintronic devices.

"Different directions in spin can mean different states for data storage," said Saw-Wai Hla, an associate professor of physics and astronomy in Ohio University's Nanoscale and Quantum Phenomena Institute and one of the primary investigators on the study. "The memory devices of current computers involve tens of thousands of atoms. In the future, we may be able to use one atom and change the power of the computer by the thousands."

Unlike electronic devices, which give off heat, spintronic-based devices are expected to experience less power dissipation.

The experiments were conducted in an ultra-high vacuum at the low temperature of 10 Kelvin, with the use of liquid helium. Researchers will need to observe the phenomenon at room temperature before it can be used in computer hard drives.

But the new study suggests a path to that application, said study lead author Andre Kubetzka of the University of Hamburg. To image spin direction, the team not only used a new technique but also a manganese surface with a spin that, in turn, allowed the scientists to manipulate the spin of the cobalt atoms under study.

"The combination of atom manipulation and spin sensitivity gives a new perspective of constructing atomic-scale structures and investigating their magnetic properties," Kubetzka said.

The research, which was carried out at the University of Hamburg, was supported by the German Research Foundation and a Partnership for International Collaboration and Education (PIRE) grant from National Science Foundation.

The research is the result of a collaboration among three research teams: a spin-polarized scanning tunneling microscopy group of Professor Roland Wiesendanger led by Kubetzka at the University of Hamburg, Germany; Hla, an expert in atom manipulation at Ohio University; and two theorists, Professor Stefan Heinze and Paolo Ferriani, now at the Christian-Albrechts-Universität Kiel, in Germany.

####

For more information, please click here

Contacts:
Saw-Wai Hla
(740) 593-1727


Andrea Gibson
director of research communications (740) 597-2166

Copyright © Ohio University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

Deciphering the beetle exoskeleton with nanomechanics: Understanding exoskeletons could lead to new, improved artificial materials January 12th, 2017

New laser based on unusual physics phenomenon could improve telecommunications, computing January 12th, 2017

Possible Futures

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Spintronics

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Investigations of the skyrmion Hall effect reveal surprising results: One step further towards the application of skyrmions in spintronic devices December 28th, 2016

Electron highway inside crystal December 12th, 2016

Making spintronic neurons sing in unison November 18th, 2016

Memory Technology

Investigations of the skyrmion Hall effect reveal surprising results: One step further towards the application of skyrmions in spintronic devices December 28th, 2016

New material with ferroelectricity and ferromagnetism may lead to better computer memory December 21st, 2016

Characterization of magnetic nanovortices simplified December 21st, 2016

New technology of ultrahigh density optical storage researched at Kazan University: The ever-growing demand for storage devices stimulates scientists to find new ways of improving the performance of existing technologies November 30th, 2016

Discoveries

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Announcements

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Tools

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanomechanics Inc. Continues Growth in Revenue and Market Penetration: Leading nanoindentation company reports continued growth in revenues and distribution channels on national and international scales December 27th, 2016

Nanometrics to Present at the 19th Annual Needham Growth Conference December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project