Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Fuel Cells Get Up to Speed with a New Kind of Platinum

Researchers including Hirohito Ogasawara (left), Anders Nilsson (center), and Mike Toney (right) used SSRL's bright X-ray beam to study a new form of platinum that could be used to make cheaper, more efficient fuel cells. (Photo courtesy Kelen Tuttle)
Researchers including Hirohito Ogasawara (left), Anders Nilsson (center), and Mike Toney (right) used SSRL's bright X-ray beam to study a new form of platinum that could be used to make cheaper, more efficient fuel cells. (Photo courtesy Kelen Tuttle)

Abstract:
A new form of platinum that could be used to make cheaper, more efficient fuel cells has been created by researchers at the Department of Energy's SLAC National Accelerator Laboratory and the University of Houston. The process, described in the April 25th issue of Nature Chemistry, could help enable broader use of the devices, which produce emissions-free energy using hydrogen.

Fuel Cells Get Up to Speed with a New Kind of Platinum

Menlo Park | Posted on April 28th, 2010

"This is a significant advance," said scientist Anders Nilsson, who conducts research at the Stanford Institute for Materials and Energy Sciences, a joint institute between SLAC and Stanford University. "Fuel cells were invented more than 100 years ago. They haven't made a leap over to being a big technology yet, in part because of this difficulty with platinum."

Fuel cells hold significant promise for clean energy because the cell's only byproduct is water. But current fuel cell designs can require as much as 100 grams of platinum, pushing their price tags into the thousands of dollars. By tweaking platinum's reactivity, the researchers were able to curtail the amount of platinum required by 80 percent, and hope to soon reduce it by another 10 percent, greatly trimming away at the overall cost.

"I think with a factor of ten, we'll have a home run," Nilsson added.

Fuel cells work much like batteries—an anode provides electrons and a cathode collects them on the other end of an electrical circuit. But unlike batteries, fuel cells use hydrogen and oxygen to drive their energy-producing reactions; when oxygen enters the metal cathode, it is broken down into individual atoms before it forms water with hydrogen.

The choice of metal for the cathode is extremely important, as some metals cannot break apart the oxygen atoms while others try to bind too strongly to the oxygen atoms, taking them away from the key reaction. Scientists seek the perfect "balance point," where the number of oxygen bonds broken is maximized and the oxygen atoms bind more weakly to the catalyst. They achieved the balance with platinum, which is strong enough to break the oxygen bonds but does not bind to the free oxygen atoms too strongly. Unfortunately, it also costs enough to make platinum-electrode fuel cells untenably expensive.

In 2005, University of Houston researcher Peter Strasser started looking for ways to crack the platinum problem not by replacing platinum outright, as other researchers sought to do, but by making platinum more reactive.

To do this, Strasser and colleagues used a process called dealloying. First, they combined platinum with varying amounts of copper to create a copper-platinum alloy. Then they removed the copper from the surface region of the alloy. When they tested the binding properties of the dealloyed platinum-copper catalyst, they found it was much more reactive than it would be otherwise.

To find out why, Strasser, Nilsson and colleagues Mike Toney and Hirohito Ogasawara put dealloyed samples under the extremely bright X-ray beam at the Stanford Synchrotron Radiation Lightsource. By studying how X-rays scattered from the dealloyed samples, they were able to create detailed pictures of the metal's internal structure, revealing that the increased reactivity was caused by lattice strain—a phenomenon in which the arrangement of platinum atoms is modified. By compressing the surface platinum atoms closer together, the process causes platinum atoms to bind a little more weakly to oxygen atoms and inch closer to that magical balance point between molecule dissociation and catalytic binding.

"The distance between two neighboring atoms affects their electronic structure," Strasser said. "By changing the interatomic distance, we can manipulate how strongly they form bonds."

The next step for the researchers will be to use the SSRL beam to get a closer look at the reactions between oxygen and platinum, and to determine what can be done to make the process even more efficient. The ultimate goal is to create a potential replacement not only for gasoline engines but also for the batteries found in small electronic devices.

The majority of this research is supported by the U.S. Department of Energy Office of Science through its programs at the Stanford Synchrotron Radiation Lightsource and the Stanford Institute for Materials and Energy Sciences at SLAC National Accelerator Laboratory and Stanford University. Collaborating institutions also include Argonne National Laboratory, Oak Ridge National Laboratory, Technical University Berlin and the University of Houston.

####

About SLAC National Accelerator Laboratory
SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the U.S. Department of Energy Office of Science. The Stanford Synchrotron Radiation Lightsource at SLAC is a national user facility which provides synchrotron radiation for research in chemistry, biology, physics and materials science to over two thousand users each year.

For more information, please click here

Contacts:
Melinda Lee
SLAC Media Manager
1 (650) 926-8547


Robert Brown
SLAC Director of Communications
1 (650) 926-8707

Copyright © SLAC National Accelerator Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Get ready for NanoDays! March 5th, 2015

American Chemical Society Presidential Symposia: nanoscience, international chemistry March 5th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Govt.-Legislation/Regulation/Funding/Policy

New research could lead to more efficient electrical energy storage March 4th, 2015

Energy-generating cloth could replace batteries in wearable devices March 4th, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

Academic/Education

Get ready for NanoDays! March 5th, 2015

NanoTecNexus Launches New App for Learning About Nanotechnology—STEM Education Project Spearheaded by Interns February 26th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

KIT Increases Commitment in Asia: DAAD Funds Two New Projects: Strategic Partnerships with Chinese Universities and Communi-cation Technologies Network February 22nd, 2015

Materials/Metamaterials

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Breakthrough in OLED technology March 2nd, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Announcements

Get ready for NanoDays! March 5th, 2015

American Chemical Society Presidential Symposia: nanoscience, international chemistry March 5th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Energy

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

UC research partnership explores how to best harness solar power March 2nd, 2015

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Fuel Cells

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Review highlights the potential for graphene and other 2D crystals in the energy sector February 4th, 2015

New concept of fuel cell for efficiency and environment: It grasps both performance efficiency and removal of toxic heavy metal ions in direct methanol fuel cells January 5th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE