Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Fuel Cells Get Up to Speed with a New Kind of Platinum

Researchers including Hirohito Ogasawara (left), Anders Nilsson (center), and Mike Toney (right) used SSRL's bright X-ray beam to study a new form of platinum that could be used to make cheaper, more efficient fuel cells. (Photo courtesy Kelen Tuttle)
Researchers including Hirohito Ogasawara (left), Anders Nilsson (center), and Mike Toney (right) used SSRL's bright X-ray beam to study a new form of platinum that could be used to make cheaper, more efficient fuel cells. (Photo courtesy Kelen Tuttle)

Abstract:
A new form of platinum that could be used to make cheaper, more efficient fuel cells has been created by researchers at the Department of Energy's SLAC National Accelerator Laboratory and the University of Houston. The process, described in the April 25th issue of Nature Chemistry, could help enable broader use of the devices, which produce emissions-free energy using hydrogen.

Fuel Cells Get Up to Speed with a New Kind of Platinum

Menlo Park | Posted on April 28th, 2010

"This is a significant advance," said scientist Anders Nilsson, who conducts research at the Stanford Institute for Materials and Energy Sciences, a joint institute between SLAC and Stanford University. "Fuel cells were invented more than 100 years ago. They haven't made a leap over to being a big technology yet, in part because of this difficulty with platinum."

Fuel cells hold significant promise for clean energy because the cell's only byproduct is water. But current fuel cell designs can require as much as 100 grams of platinum, pushing their price tags into the thousands of dollars. By tweaking platinum's reactivity, the researchers were able to curtail the amount of platinum required by 80 percent, and hope to soon reduce it by another 10 percent, greatly trimming away at the overall cost.

"I think with a factor of ten, we'll have a home run," Nilsson added.

Fuel cells work much like batteries—an anode provides electrons and a cathode collects them on the other end of an electrical circuit. But unlike batteries, fuel cells use hydrogen and oxygen to drive their energy-producing reactions; when oxygen enters the metal cathode, it is broken down into individual atoms before it forms water with hydrogen.

The choice of metal for the cathode is extremely important, as some metals cannot break apart the oxygen atoms while others try to bind too strongly to the oxygen atoms, taking them away from the key reaction. Scientists seek the perfect "balance point," where the number of oxygen bonds broken is maximized and the oxygen atoms bind more weakly to the catalyst. They achieved the balance with platinum, which is strong enough to break the oxygen bonds but does not bind to the free oxygen atoms too strongly. Unfortunately, it also costs enough to make platinum-electrode fuel cells untenably expensive.

In 2005, University of Houston researcher Peter Strasser started looking for ways to crack the platinum problem not by replacing platinum outright, as other researchers sought to do, but by making platinum more reactive.

To do this, Strasser and colleagues used a process called dealloying. First, they combined platinum with varying amounts of copper to create a copper-platinum alloy. Then they removed the copper from the surface region of the alloy. When they tested the binding properties of the dealloyed platinum-copper catalyst, they found it was much more reactive than it would be otherwise.

To find out why, Strasser, Nilsson and colleagues Mike Toney and Hirohito Ogasawara put dealloyed samples under the extremely bright X-ray beam at the Stanford Synchrotron Radiation Lightsource. By studying how X-rays scattered from the dealloyed samples, they were able to create detailed pictures of the metal's internal structure, revealing that the increased reactivity was caused by lattice strain—a phenomenon in which the arrangement of platinum atoms is modified. By compressing the surface platinum atoms closer together, the process causes platinum atoms to bind a little more weakly to oxygen atoms and inch closer to that magical balance point between molecule dissociation and catalytic binding.

"The distance between two neighboring atoms affects their electronic structure," Strasser said. "By changing the interatomic distance, we can manipulate how strongly they form bonds."

The next step for the researchers will be to use the SSRL beam to get a closer look at the reactions between oxygen and platinum, and to determine what can be done to make the process even more efficient. The ultimate goal is to create a potential replacement not only for gasoline engines but also for the batteries found in small electronic devices.

The majority of this research is supported by the U.S. Department of Energy Office of Science through its programs at the Stanford Synchrotron Radiation Lightsource and the Stanford Institute for Materials and Energy Sciences at SLAC National Accelerator Laboratory and Stanford University. Collaborating institutions also include Argonne National Laboratory, Oak Ridge National Laboratory, Technical University Berlin and the University of Houston.

####

About SLAC National Accelerator Laboratory
SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the U.S. Department of Energy Office of Science. The Stanford Synchrotron Radiation Lightsource at SLAC is a national user facility which provides synchrotron radiation for research in chemistry, biology, physics and materials science to over two thousand users each year.

For more information, please click here

Contacts:
Melinda Lee
SLAC Media Manager
1 (650) 926-8547


Robert Brown
SLAC Director of Communications
1 (650) 926-8707

Copyright © SLAC National Accelerator Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Govt.-Legislation/Regulation/Funding/Policy

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Possible Futures

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NNCO and Museum of Science Fiction to Collaborate on Nanotechnology and 3D Printing Panels at Awesome Con May 19th, 2015

Quantum 'gruyères' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

Academic/Education

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GW’s new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

Materials/Metamaterials

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Announcements

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Energy

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Industrial Nanotech, Inc. Announces Official Launch of the Eagle Platinum Tile™ May 19th, 2015

Fuel Cells

Unique microscopic images provide new insights into ionic liquids April 28th, 2015

Expanding the reach of metallic glass April 22nd, 2015

Newly-Developed Nanocatalysts Increase Performance of Fuel Cells April 16th, 2015

Cobalt film a clean-fuel find: Rice University discovery is efficient, robust at drawing hydrogen and oxygen from water April 15th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project