Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A Robot Called WANDA

Emory Chan, with Berkeley Lab’s Molecular Foundry, directs WANDA, a revolutionary nanocrystal-making robot, to perform complex workflows that traditionally require extensive chemistry experience. (Photo by Roy Kaltschmidt, Berkeley Lab Public Affairs)
Emory Chan, with Berkeley Lab’s Molecular Foundry, directs WANDA, a revolutionary nanocrystal-making robot, to perform complex workflows that traditionally require extensive chemistry experience. (Photo by Roy Kaltschmidt, Berkeley Lab Public Affairs)

Abstract:
No longer attributable to human error—Berkeley Lab scientists have established a revolutionary nanocrystal-making robot, capable of producing nanocrystals with staggering precision. This one-of-a-kind robot provides colloidal nanocrystals with custom-made properties for electronics, biological labeling and luminescent devices.

A Robot Called WANDA

Berkeley, CA | Posted on April 28th, 2010

This robotic engineer is named WANDA (Workstation for Automated Nanomaterial Discovery and Analysis) and was developed in collaboration with Symyx Technologies at the Molecular Foundry, a U.S. Department of Energy User Facility located at Berkeley Lab. By automating the synthesis of these nanocrystals, WANDA circumvents the issues facing traditional techniques, which can be laborious and are difficult to reproduce from one laboratory to the next. What's more, WANDA's synthetic prowess can help researchers sift through a large, diverse pool of materials for specific applications. Such a combinatorial approach has been used for decades in the pharmaceutical industry and now is being applied to nanomaterials at the Foundry.

"WANDA makes nanocrystals of exceptional quality - every time - optimized for different applications," said Delia Milliron, Director of the Inorganic Nanostructures Facility at the Molecular Foundry. "We're providing these to users and now just starting to use WANDA to discover new nanocrystal compositions with advantageous properties."

WANDA's liquid-handling robotics prepare and initiate reactions by injecting nanocrystal precursor chemicals into an array of reactors. After a series of reactions is complete, the structural and optical properties of these nanocrystals can be screened rapidly, also using automated methods. WANDA is housed inside a nitrogen-filled chamber, designed to keep oxygen and water from interacting with reactive precursor chemicals and freshly formed nanocrystals. Since this robot is controlled by software protocols, novice users can direct WANDA to perform complex workflows that traditionally require extensive chemistry experience.

Milliron and her coauthors at the Foundry and University of California, Berkeley, have directed WANDA to produce and optimize a diverse set of nanomaterials under conditions analogous to those employed in traditional flask-based chemistry. Starting with widely studied and practically useful nanomaterials—such as cadmium selenide quantum dots, whose size can be adjusted to emit different colors of visible light—the team showed how WANDA can optimize the size, crystal structure and luminescence properties of different nanocrystals.

"This technology will change the way nanoscience research is performed," said Emory Chan, a senior scientific engineering associate at the Molecular Foundry. "Not only does WANDA enable the optimization and mass production of nanoparticles our users need, but this robot also facilitates experiments that give us a deeper understanding into the chemistry and physics of nanoscale materials."

A paper reporting this research titled, "Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space," appears in the journal Nano Letters and is available in Nano Letters online. Co-authoring the paper with Chan and Milliron are Chenxu Xu, Alvin Mao, Gang Han, Jonathan Owen and Bruce Cohen.

This work was supported by DOE's Office of Science.

The Molecular Foundry is one of the five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for interdisciplinary research at the nanoscale. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit nano.energy.gov.

(with video)

####

About Berkeley Lab
Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

For more information, please click here

Contacts:
Aditi Risbud
(510)486-4861

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Nanobiotix: The Independent Data Monitoring Committee Recommends the Continuation of the Ongoing Phase II/III Trial of NBTXR3 in Soft Tissue Sarcoma March 23rd, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Possible Futures

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Academic/Education

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Materials/Metamaterials

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Announcements

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Tools

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

CRMGroup in Belgium uses a Deben three point bending stage in the development of new steel & coated steel products for automotive and other industrial applications March 21st, 2017

Next-gen steel under the microscope March 18th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project