Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A Robot Called WANDA

Emory Chan, with Berkeley Labís Molecular Foundry, directs WANDA, a revolutionary nanocrystal-making robot, to perform complex workflows that traditionally require extensive chemistry experience. (Photo by Roy Kaltschmidt, Berkeley Lab Public Affairs)
Emory Chan, with Berkeley Labís Molecular Foundry, directs WANDA, a revolutionary nanocrystal-making robot, to perform complex workflows that traditionally require extensive chemistry experience. (Photo by Roy Kaltschmidt, Berkeley Lab Public Affairs)

Abstract:
No longer attributable to human erroróBerkeley Lab scientists have established a revolutionary nanocrystal-making robot, capable of producing nanocrystals with staggering precision. This one-of-a-kind robot provides colloidal nanocrystals with custom-made properties for electronics, biological labeling and luminescent devices.

A Robot Called WANDA

Berkeley, CA | Posted on April 28th, 2010

This robotic engineer is named WANDA (Workstation for Automated Nanomaterial Discovery and Analysis) and was developed in collaboration with Symyx Technologies at the Molecular Foundry, a U.S. Department of Energy User Facility located at Berkeley Lab. By automating the synthesis of these nanocrystals, WANDA circumvents the issues facing traditional techniques, which can be laborious and are difficult to reproduce from one laboratory to the next. What's more, WANDA's synthetic prowess can help researchers sift through a large, diverse pool of materials for specific applications. Such a combinatorial approach has been used for decades in the pharmaceutical industry and now is being applied to nanomaterials at the Foundry.

"WANDA makes nanocrystals of exceptional quality - every time - optimized for different applications," said Delia Milliron, Director of the Inorganic Nanostructures Facility at the Molecular Foundry. "We're providing these to users and now just starting to use WANDA to discover new nanocrystal compositions with advantageous properties."

WANDA's liquid-handling robotics prepare and initiate reactions by injecting nanocrystal precursor chemicals into an array of reactors. After a series of reactions is complete, the structural and optical properties of these nanocrystals can be screened rapidly, also using automated methods. WANDA is housed inside a nitrogen-filled chamber, designed to keep oxygen and water from interacting with reactive precursor chemicals and freshly formed nanocrystals. Since this robot is controlled by software protocols, novice users can direct WANDA to perform complex workflows that traditionally require extensive chemistry experience.

Milliron and her coauthors at the Foundry and University of California, Berkeley, have directed WANDA to produce and optimize a diverse set of nanomaterials under conditions analogous to those employed in traditional flask-based chemistry. Starting with widely studied and practically useful nanomaterialsósuch as cadmium selenide quantum dots, whose size can be adjusted to emit different colors of visible lightóthe team showed how WANDA can optimize the size, crystal structure and luminescence properties of different nanocrystals.

"This technology will change the way nanoscience research is performed," said Emory Chan, a senior scientific engineering associate at the Molecular Foundry. "Not only does WANDA enable the optimization and mass production of nanoparticles our users need, but this robot also facilitates experiments that give us a deeper understanding into the chemistry and physics of nanoscale materials."

A paper reporting this research titled, "Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space," appears in the journal Nano Letters and is available in Nano Letters online. Co-authoring the paper with Chan and Milliron are Chenxu Xu, Alvin Mao, Gang Han, Jonathan Owen and Bruce Cohen.

This work was supported by DOE's Office of Science.

The Molecular Foundry is one of the five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for interdisciplinary research at the nanoscale. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit nano.energy.gov.

(with video)

####

About Berkeley Lab
Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

For more information, please click here

Contacts:
Aditi Risbud
(510)486-4861

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Govt.-Legislation/Regulation/Funding/Policy

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease February 22nd, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Possible Futures

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

Academic/Education

LuleŚ University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Materials/Metamaterials

Basque researchers turn light upside down February 23rd, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Announcements

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Tools

Basque researchers turn light upside down February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project