Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > New ORNL carbon composite holds promise for bionics

Abstract:
Mimicking the human nervous system for bionic applications could become a reality with the help of a method developed at Oak Ridge National Laboratory to process carbon nanotubes.

New ORNL carbon composite holds promise for bionics

Oak Ridge, TN | Posted on April 28th, 2010

While these nanostructures have electrical and other properties that make them attractive to use as artificial neural bundles in prosthetic devices, the challenge has been to make bundles with enough fibers to match that of a real neuron bundle. With current technology, the weight alone of wires required to match the density of receptors at even the fingertips would make it impossible to accommodate. Now, by adapting conventional glass fiber drawing technology to process carbon nanotubes into multichannel assemblies, researchers believe they are on a path that could lead to a breakthrough.

"Our goal is to use our discovery to mimic nature's design using artificial sensors to effectively restore a person's ability to sense objects and temperatures," said Ilia Ivanov, a researcher in the Center for Nanophase Materials Sciences Division. Ivanov and colleagues at ORNL recently published a paper in Nanotechnology that outlines the method of processing loose carbon nanotubes into a bundle with nearly 20,000 individual channels.

Ultimately, the goal is to duplicate the function of a living system by combining the existing technology of glass fiber drawing with the multi-functionality of sub-micron (0.4 micron) scale carbon nanotubes, according to Ivanov, who described the process.

"We make this material in a way similar to what you may have done in high school when making a glass capillary over a Bunsen burner," Ivanov said. "There, you would take the glass tube, heat it up and pull, or draw, as soon as the glass became soft."

Ivanov and John Simpson of the Measurement Science and Systems Engineering Division are doing something similar except they use thousands of glass tubes filled with carbon nanotube powder. After several draw cycles, they demonstrated that they could make fibers just four times thicker than a human hair containing 19,600 sub-micron channels with each channel filled with conducting carbon. Each carbon nanotube-containing channel is electrically insulated from its neighbors by glass so it can be used as an individual communication channel.

With this achievement, the researchers are moving closer to realizing one of their goals.

"The human hand has a density of receptors at the fingertips of about 2,500 per square centimeter and about 17,000 tactile receptors in the hand," Ivanov said. "So in terms of density of channels, we are already in the range needed for 17,000 receptors in the hand."

This multichannel composite has many other potential uses, including in aeronautics and space applications, where low weight of conducting wires is important,

The next steps are to make these channels highly conductive and then show sensor communication through individual channels.

Other authors of the Nanotechnology paper, which was published in February, are Troy Hendricks and Daniel Schaeffer of the Measurement Science and Systems Engineering Division and Paul Menchhofer of the Materials Science and Technology Division. Initial carbon nanotube research was funded by the Scientific User Facilities Division, DOE Office of Basic Energy Sciences. Processing research was sponsored by the ORNL Laboratory Directed Research and Development program.

####

About Oak Ridge National Laboratory
The Center for Nanophase Materials Sciences at ORNL is one of the five DOE Nanoscale Science Research Centers, premier national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, Sandia and Los Alamos national laboratories. For more information about the DOE NSRCs, please visit nano.energy.gov.

UT-Battelle manages ORNL for the Department of Energy's Office of Science.

For more information, please click here

Contacts:
Ron Walli
Communications and External Relations
865.576.0226

Copyright © Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Nanometrics Reports Second Quarter 2016 Financial Results July 26th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Possible Futures

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Nanotubes/Buckyballs/Fullerenes

Easier, faster, cheaper: A full-filling approach to making nanotubes of consistent quality: Approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes July 19th, 2016

Sensing trouble: A new way to detect hidden damage in bridges, roads: University of Delaware engineers devise new method for monitoring structural health July 8th, 2016

Wireless, wearable toxic-gas detector: Inexpensive sensors could be worn by soldiers to detect hazardous chemical agents July 4th, 2016

Nanotubes' 'stuffing' as is: A scientist from the Lomonosov Moscow State University studied the types of carbon nanotubes' 'stuffing' June 2nd, 2016

Nanomedicine

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

The NanoWizardŽ AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

Sensors

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Electron 'spin control' of levitated nanodiamonds could bring advances in sensors, quantum information processing July 20th, 2016

Easier, faster, cheaper: A full-filling approach to making nanotubes of consistent quality: Approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes July 19th, 2016

Announcements

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Nanometrics Reports Second Quarter 2016 Financial Results July 26th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Nanobiotechnology

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

Nanoparticle versus cancer: Scientists have created nanoparticles which cure cancer harmlessly July 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic