Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New ORNL carbon composite holds promise for bionics

Abstract:
Mimicking the human nervous system for bionic applications could become a reality with the help of a method developed at Oak Ridge National Laboratory to process carbon nanotubes.

New ORNL carbon composite holds promise for bionics

Oak Ridge, TN | Posted on April 28th, 2010

While these nanostructures have electrical and other properties that make them attractive to use as artificial neural bundles in prosthetic devices, the challenge has been to make bundles with enough fibers to match that of a real neuron bundle. With current technology, the weight alone of wires required to match the density of receptors at even the fingertips would make it impossible to accommodate. Now, by adapting conventional glass fiber drawing technology to process carbon nanotubes into multichannel assemblies, researchers believe they are on a path that could lead to a breakthrough.

"Our goal is to use our discovery to mimic nature's design using artificial sensors to effectively restore a person's ability to sense objects and temperatures," said Ilia Ivanov, a researcher in the Center for Nanophase Materials Sciences Division. Ivanov and colleagues at ORNL recently published a paper in Nanotechnology that outlines the method of processing loose carbon nanotubes into a bundle with nearly 20,000 individual channels.

Ultimately, the goal is to duplicate the function of a living system by combining the existing technology of glass fiber drawing with the multi-functionality of sub-micron (0.4 micron) scale carbon nanotubes, according to Ivanov, who described the process.

"We make this material in a way similar to what you may have done in high school when making a glass capillary over a Bunsen burner," Ivanov said. "There, you would take the glass tube, heat it up and pull, or draw, as soon as the glass became soft."

Ivanov and John Simpson of the Measurement Science and Systems Engineering Division are doing something similar except they use thousands of glass tubes filled with carbon nanotube powder. After several draw cycles, they demonstrated that they could make fibers just four times thicker than a human hair containing 19,600 sub-micron channels with each channel filled with conducting carbon. Each carbon nanotube-containing channel is electrically insulated from its neighbors by glass so it can be used as an individual communication channel.

With this achievement, the researchers are moving closer to realizing one of their goals.

"The human hand has a density of receptors at the fingertips of about 2,500 per square centimeter and about 17,000 tactile receptors in the hand," Ivanov said. "So in terms of density of channels, we are already in the range needed for 17,000 receptors in the hand."

This multichannel composite has many other potential uses, including in aeronautics and space applications, where low weight of conducting wires is important,

The next steps are to make these channels highly conductive and then show sensor communication through individual channels.

Other authors of the Nanotechnology paper, which was published in February, are Troy Hendricks and Daniel Schaeffer of the Measurement Science and Systems Engineering Division and Paul Menchhofer of the Materials Science and Technology Division. Initial carbon nanotube research was funded by the Scientific User Facilities Division, DOE Office of Basic Energy Sciences. Processing research was sponsored by the ORNL Laboratory Directed Research and Development program.

####

About Oak Ridge National Laboratory
The Center for Nanophase Materials Sciences at ORNL is one of the five DOE Nanoscale Science Research Centers, premier national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, Sandia and Los Alamos national laboratories. For more information about the DOE NSRCs, please visit nano.energy.gov.

UT-Battelle manages ORNL for the Department of Energy's Office of Science.

For more information, please click here

Contacts:
Ron Walli
Communications and External Relations
865.576.0226

Copyright © Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Nanotubes/Buckyballs

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Nanomedicine

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Sensors

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

Nanoscience makes your wine better September 17th, 2014

Announcements

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

Nanobiotechnology

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

CiQUS researchers design an artificial nose to detect DNA differentiation with single nucleotide resolution September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE