Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Drug delivery illustration

Abstract:
Nanobotmodels Company present new drug delivery illustration

Drug delivery illustration

Russia | Posted on April 28th, 2010

Nanoparticles, products of nanotechnology, are of increasing interest to the pharmaceutical community. They can increase drug solubility, enhance bioavailability, allow tissue targeting, offer decreased side-effects, and improve therapeutic efficacy.

Presenting the most pertinent and practical issues in the manufacturing and biological application of nanoparticles, this source presents state-of-the-art scientific contributions by seasoned authorities in the field.

Many medications such as peptide and protein, antibody, vaccine and gene based drugs, in general may not be delivered using these routes because they might be susceptible to enzymatic degradation or can not be absorbed into the systemic circulation efficiently due to molecular size and charge issues to be therapeutically effective. For this reason many protein and peptide drugs have to be delivered by injection. For example, many immunizations are based on the delivery of protein drugs and are often done by injection.

Targeted drug delivery is a method of delivering medication to a patient in a manner that increases the concentration of the medication in some parts of the body relative to others.

When a cell membrane recognizes a foreign object such as a nanoparticle, it normally wraps around or "eats" it, encasing the object in a smaller bubble inside the cell that can eventually be excreted. Any drugs or other agents attached to the nanoparticle therefore never reach the main fluid section of the cell, or cytosol, where they could have an effect.

Nanobotmodels Company provides illustration of drug delivery process including various types of nanoparticles. Our goal - make realistic vision of modern drug delivery technology.

More information about image you can find here: www.nanobotmodels.com/node/52

For more detail please contact: info(at)nanobotmodels.com

####

About Nanobotmodels
Our company Nanobotmodels (www.nanobotmodels.com) was founded in 2007 and it goal is develop modern art-science-technology intersections. Nanotechnology boost medicine, engeneering, biotechnology, electronics soon, so artwork and vision of the nanofuture will be very useful.

Our team consist of modern artists, modellers and nanotechnology scientists.

For more information, please click here

Contacts:
common questions:

sales and image permissions:

Svidinenko Yuriy
Nanobotmodels Company CEO

Phone: +38 (096) 470 41 66

Copyright © Nanobotmodels

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Nanomedicine

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Nanobiotechnology

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic