Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Graphene Outperforms Carbon Nanotubes for Creating Stronger, More Crack-Resistant Materials

New studies by Professor Nikhil Koratkar show graphene outperforms carbon nanotubes and other nanoparticles for boosting the strength and mechanical performance of epoxy composites. Pictured are graphene platelets that Koratkar's research team extracted from bulk graphite.
New studies by Professor Nikhil Koratkar show graphene outperforms carbon nanotubes and other nanoparticles for boosting the strength and mechanical performance of epoxy composites. Pictured are graphene platelets that Koratkar's research team extracted from bulk graphite.

Abstract:
New Study Shows Graphene Could Help Prevent Fracture and Fatigue Failure in Composite-Based Structures Including Windmill Blades and Aircraft Wings

Graphene Outperforms Carbon Nanotubes for Creating Stronger, More Crack-Resistant Materials

Troy, NY | Posted on April 27th, 2010

Three new studies from researchers at Rensselaer Polytechnic Institute illustrate why graphene should be the nanomaterial of choice to strengthen composite materials used in everything from wind turbines to aircraft wings.

Composites infused with graphene are stronger, stiffer, and less prone to failure than composites infused with carbon nanotubes or other nanoparticles, according to the studies. This means graphene, an atom-thick sheet of carbon atoms arranged like a nanoscale chain-link fence, could be a key enabler in the development of next-generation nanocomposite materials.

"I've been working in nanocomposites for 10 years, and graphene is the best one I've ever seen in terms of mechanical properties," said Nikhil Koratkar, professor in the Department of Mechanical, Aerospace, and Nuclear Engineering at Rensselaer, who led the studies. "Graphene is far superior to carbon nanotubes or any other known nanofiller in transferring its exceptional strength and mechanical properties to a host material."

Results of Koratkar's studies are detailed in three recently published papers: "Fracture and Fatigue in Graphene Nanocomposites," published in Small; "Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content," published in ACS Nano; and "Buckling Resistant Graphene Nanocomposites," published in the journal Applied Physics Letters.

Advanced composites are increasingly a key component in the design of new windmill blades, aircraft, and other applications requiring ultra-light, high-strength materials. Epoxy composite materials are extremely lightweight, but can be brittle and prone to fracture. Koratkar's team has infused the advanced composites with stacks, or platelets, of graphene. Each stack is only a few nanometers thick. The research team also infused epoxy composites with carbon nanotubes.

Epoxy materials infused with graphene exhibited far superior performance. In fact, adding graphene equal to 0.1 percent of the weight of the composite boosted the strength and the stiffness of the material to the same degree as adding carbon nanotubes equal to 1 percent of the weight of the composite. This gain, on the measure of one order of magnitude, highlights the promise of graphene, Koratkar said. The graphene fillers also boosted the composite's resistance to fatigue crack propagation by nearly two orders of magnitude, compared to the baseline epoxy material.

Though graphene and carbon nanotubes are nearly identical in their chemical makeup and mechanical properties, graphene is far better than carbon nanotubes at lending its attributes to a material with which it's mixed.

"Nanotubes are incredibly strong, but they're of little use mechanically if they don't transfer their properties to the composite," Koratkar said. "A chain is only as strong as its weakest link, and if that link is between the nanotube and the polymer, then that is what determines the overall mechanical properties. It doesn't matter if the nanotubes are super strong or super stiff, if the interface with the polymer is weak, that interface is going to fail."

Koratkar said graphene has three distinct advantages over carbon nanotubes. The first advantage is the rough and wrinkled surface texture of graphene, caused by a very high density of surface defects. These defects are a result of the thermal exfoliation process that the Rensselaer research team used to manufacture bulk quantities of graphene from graphite. These "wrinkly" surfaces interlock extremely well with the surrounding polymer material, helping to boost the interfacial load transfer between graphene and the host material.

The second advantage is surface area. As a planer sheet, graphene benefits from considerably more contact with the polymer material than the tube-shaped carbon nanotubes. This is because the polymer chains are unable to enter the interior of the nanotubes, but both the top and bottom surfaces of the graphene sheet can be in close contact with the polymer matrix.

The third benefit is geometry. When microcracks in the composite structure encounter a two-dimensional graphene sheet, they are deflected, or forced to tilt and twist around the sheet. This process helps to absorb the energy that is responsible for propagating the crack. Crack deflection processes are far more effective for two-dimensional sheets with a high aspect ratio such as graphene, as compared to one-dimensional nanotubes.

Koratkar said the aerospace and wind power industries are seeking new materials with which to design stronger, longer-lived rotor and wind turbine blades. His research group plans to further investigate how graphene can benefit this goal. Graphene shows great promise for this because it can be produced from graphite, which is available in bulk quantities and at relatively low cost, he said, which means mass production of graphene is likely to be far more cost effective than nanotubes.

Co-authors on the three papers include Rensselaer mechanical engineering graduate students Mohammed A. Rafiee, Javad Rafiee, and Iti Srivastava; as along with Professor Zhong-Zhen Yu's group at the Beijing University of Chemical Technology.

Koratkar's research is funded by the U.S. Office of Naval Research (ONR), U.S. Army, and the U.S. National Science Foundation (NSF).

For more information on Koratkar's research, visit: www.rpi.edu/~koratn.

####

For more information, please click here

Contacts:
Michael Mullaney
Phone: (518) 276-6161

Copyright © Rensselaer Polytechnic Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Sopping up proteins with thermosponges: Researchers develop novel nanoparticle platform that proves effective in delivering protein-based drugs October 22nd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Academic/Education

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Raytheon, UMass Lowell open on-campus research institute: Industry leaderís researchers to collaborate with faculty, students to move key technologies forward through first-of-its-kind partnership October 11th, 2014

SUNY Colleges of Nanoscale Science and Engineering and National Institute for Occupational Safety and Health Announce Expanded Partnership October 2nd, 2014

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Nanotubes/Buckyballs

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Beyond LEDs: Brighter, new energy-saving flat panel lights based on carbon nanotubes - Planar light source using a phosphor screen with highly crystalline single-walled carbon nanotubes (SWCNTs) as field emitters demonstrates its potential for energy-efficient lighting device October 14th, 2014

Materials/Metamaterials

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Announcements

NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Aerospace/Space

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

1980s aircraft helps quantum technology take flight October 20th, 2014

Electrically conductive plastics promising for batteries, solar cells October 10th, 2014

Fast, cheap nanomanufacturing: Arrays of tiny conical tips that eject ionized materials could fabricate nanoscale devices cheaply October 4th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE