Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Graphene Outperforms Carbon Nanotubes for Creating Stronger, More Crack-Resistant Materials

New studies by Professor Nikhil Koratkar show graphene outperforms carbon nanotubes and other nanoparticles for boosting the strength and mechanical performance of epoxy composites. Pictured are graphene platelets that Koratkar's research team extracted from bulk graphite.
New studies by Professor Nikhil Koratkar show graphene outperforms carbon nanotubes and other nanoparticles for boosting the strength and mechanical performance of epoxy composites. Pictured are graphene platelets that Koratkar's research team extracted from bulk graphite.

Abstract:
New Study Shows Graphene Could Help Prevent Fracture and Fatigue Failure in Composite-Based Structures Including Windmill Blades and Aircraft Wings

Graphene Outperforms Carbon Nanotubes for Creating Stronger, More Crack-Resistant Materials

Troy, NY | Posted on April 27th, 2010

Three new studies from researchers at Rensselaer Polytechnic Institute illustrate why graphene should be the nanomaterial of choice to strengthen composite materials used in everything from wind turbines to aircraft wings.

Composites infused with graphene are stronger, stiffer, and less prone to failure than composites infused with carbon nanotubes or other nanoparticles, according to the studies. This means graphene, an atom-thick sheet of carbon atoms arranged like a nanoscale chain-link fence, could be a key enabler in the development of next-generation nanocomposite materials.

"I've been working in nanocomposites for 10 years, and graphene is the best one I've ever seen in terms of mechanical properties," said Nikhil Koratkar, professor in the Department of Mechanical, Aerospace, and Nuclear Engineering at Rensselaer, who led the studies. "Graphene is far superior to carbon nanotubes or any other known nanofiller in transferring its exceptional strength and mechanical properties to a host material."

Results of Koratkar's studies are detailed in three recently published papers: "Fracture and Fatigue in Graphene Nanocomposites," published in Small; "Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content," published in ACS Nano; and "Buckling Resistant Graphene Nanocomposites," published in the journal Applied Physics Letters.

Advanced composites are increasingly a key component in the design of new windmill blades, aircraft, and other applications requiring ultra-light, high-strength materials. Epoxy composite materials are extremely lightweight, but can be brittle and prone to fracture. Koratkar's team has infused the advanced composites with stacks, or platelets, of graphene. Each stack is only a few nanometers thick. The research team also infused epoxy composites with carbon nanotubes.

Epoxy materials infused with graphene exhibited far superior performance. In fact, adding graphene equal to 0.1 percent of the weight of the composite boosted the strength and the stiffness of the material to the same degree as adding carbon nanotubes equal to 1 percent of the weight of the composite. This gain, on the measure of one order of magnitude, highlights the promise of graphene, Koratkar said. The graphene fillers also boosted the composite's resistance to fatigue crack propagation by nearly two orders of magnitude, compared to the baseline epoxy material.

Though graphene and carbon nanotubes are nearly identical in their chemical makeup and mechanical properties, graphene is far better than carbon nanotubes at lending its attributes to a material with which it's mixed.

"Nanotubes are incredibly strong, but they're of little use mechanically if they don't transfer their properties to the composite," Koratkar said. "A chain is only as strong as its weakest link, and if that link is between the nanotube and the polymer, then that is what determines the overall mechanical properties. It doesn't matter if the nanotubes are super strong or super stiff, if the interface with the polymer is weak, that interface is going to fail."

Koratkar said graphene has three distinct advantages over carbon nanotubes. The first advantage is the rough and wrinkled surface texture of graphene, caused by a very high density of surface defects. These defects are a result of the thermal exfoliation process that the Rensselaer research team used to manufacture bulk quantities of graphene from graphite. These "wrinkly" surfaces interlock extremely well with the surrounding polymer material, helping to boost the interfacial load transfer between graphene and the host material.

The second advantage is surface area. As a planer sheet, graphene benefits from considerably more contact with the polymer material than the tube-shaped carbon nanotubes. This is because the polymer chains are unable to enter the interior of the nanotubes, but both the top and bottom surfaces of the graphene sheet can be in close contact with the polymer matrix.

The third benefit is geometry. When microcracks in the composite structure encounter a two-dimensional graphene sheet, they are deflected, or forced to tilt and twist around the sheet. This process helps to absorb the energy that is responsible for propagating the crack. Crack deflection processes are far more effective for two-dimensional sheets with a high aspect ratio such as graphene, as compared to one-dimensional nanotubes.

Koratkar said the aerospace and wind power industries are seeking new materials with which to design stronger, longer-lived rotor and wind turbine blades. His research group plans to further investigate how graphene can benefit this goal. Graphene shows great promise for this because it can be produced from graphite, which is available in bulk quantities and at relatively low cost, he said, which means mass production of graphene is likely to be far more cost effective than nanotubes.

Co-authors on the three papers include Rensselaer mechanical engineering graduate students Mohammed A. Rafiee, Javad Rafiee, and Iti Srivastava; as along with Professor Zhong-Zhen Yu's group at the Beijing University of Chemical Technology.

Koratkar's research is funded by the U.S. Office of Naval Research (ONR), U.S. Army, and the U.S. National Science Foundation (NSF).

For more information on Koratkar's research, visit: www.rpi.edu/~koratn.

####

For more information, please click here

Contacts:
Michael Mullaney
Phone: (518) 276-6161

Copyright © Rensselaer Polytechnic Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Engineers pioneer platinum shell formation process and achieve first-ever observation August 11th, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Killing cancer in the heat of the moment: A new method efficiently transfers genes into cells, then activates them with light. This could lead to gene therapies for cancers July 9th, 2017

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

Materials/Metamaterials

Researchers printed graphene-like materials with inkjet August 17th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Announcements

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Aerospace/Space

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

National Space Society Governor Scott Pace Named to National Space Council as Executive Secretary July 18th, 2017

National Space Society Supports VP Pence's Call for Constant Low-Earth Orbit Human Presence Leading to the Settlement of Space July 13th, 2017

Thinking thin brings new layering and thermal abilities to the semiconductor industry: In a breakthrough for the semiconductor industry, researchers demonstrate a new layer transfer technique called "controlled spalling" that creates many thin layers from a single gallium nitride July 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project