Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Brain-like computing on an organic molecular layer

Magnetic resonance images of human brain during different functions appear on top. Similar evolving patterns have been generated on the molecular monolayer one after another (bottom). A snapshot of the evolving pattern for a particular brain function is captured using Scanning Tunneling Microscope at 0.68 V tip bias (scale bar is 6 nm). The input pattern to mimic particular brain function is distinct, and the dynamics of pattern evolution is also typical for a particular brain operation. Credit: Anirban Bandyopadhyay
Magnetic resonance images of human brain during different functions appear on top. Similar evolving patterns have been generated on the molecular monolayer one after another (bottom). A snapshot of the evolving pattern for a particular brain function is captured using Scanning Tunneling Microscope at 0.68 V tip bias (scale bar is 6 nm). The input pattern to mimic particular brain function is distinct, and the dynamics of pattern evolution is also typical for a particular brain operation. Credit: Anirban Bandyopadhyay

Abstract:
Toward intelligent and creative computers

Brain-like computing on an organic molecular layer

Houghton, MI | Posted on April 27th, 2010

Information processing circuits in digital computers are static. In our brains, information processing circuits—neurons—evolve continuously to solve complex problems. Now, an international research team from Japan and Michigan Technological University has created a similar process of circuit evolution in an organic molecular layer that can solve complex problems. This is the first time a brain-like "evolutionary circuit" has been realized.

This computer is massively parallel: The world's fastest supercomputers can only process bits one at a time in each of their channels. Their circuit allows instantaneous changes of ~300 bits.

Their processor can produce solutions to problems for which algorithms on computers are unknown, like predictions of natural calamities and outbreaks of disease. To prove this unique feature, they have mimicked two natural phenomena in the molecular layer: heat diffusion and the evolution of cancer cells.

The monolayer has intelligence; it can solve many problems on the same grid.

Their molecular processor heals itself if there is a defect. This remarkable self-healing property comes from the self-organizing ability of the molecular monolayer. No existing man-made computer has this property, but our brain does: if a neuron dies, another neuron takes over its function.

The work is described in the Nature Physics paper "Massively parallel computing on an organic molecular layer." It is coauthored by Ranjit Pati, of the Michigan Technological University Department of Physics. Lead author is Anirban Bandyopadhyay, National Institute for Materials Science, National Institute of Information and Communication Technology, Japan.

####

About Michigan Technological University
Michigan Technological University (mtu.edu) is a leading public research university developing new technologies and preparing students to create the future for a prosperous and sustainable world. Michigan Tech offers more than 130 undergraduate and graduate degree programs in engineering; forest resources; computing; technology; business; economics; natural, physical and environmental sciences; arts; humanities; and social sciences.

For more information, please click here

Contacts:
Marcia Goodrich

906-487-2343

Copyright © Eurekalert

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

Tokyo Institute of Technology research: Catalyst redefines rate limitations in ammonia production March 30th, 2015

Next important step toward quantum computer: Scientists at the University of Bonn have succeeded in linking 2 different quantum systems March 30th, 2015

'Atomic chicken-wire' is key to faster DNA sequencing March 30th, 2015

Possible Futures

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Nanotechnology Drug Delivery Market in the US 2012-2016 : Latest Report Available by Radiant Insights, Inc March 16th, 2015

Chip Technology

Next important step toward quantum computer: Scientists at the University of Bonn have succeeded in linking 2 different quantum systems March 30th, 2015

State-of-the-art online system unveiled to pinpoint metrology software accuracy March 27th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

NXP and GLOBALFOUNDRIES Announce Production of 40nm Embedded Non-Volatile Memory Technology: Co-developed technology to leverage GLOBALFOUNDRIES 40nm process technology platform March 24th, 2015

Announcements

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

Tokyo Institute of Technology research: Catalyst redefines rate limitations in ammonia production March 30th, 2015

Next important step toward quantum computer: Scientists at the University of Bonn have succeeded in linking 2 different quantum systems March 30th, 2015

'Atomic chicken-wire' is key to faster DNA sequencing March 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE