Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > How Things Work: Atomic force microscopy

Electron microscopy allows us to see the cantilever of an atomic force microscope. This cantilever applies force to a surface, producing an accurate image of the surface. Courtesy of Wikimedia Commons.
Electron microscopy allows us to see the cantilever of an atomic force microscope. This cantilever applies force to a surface, producing an accurate image of the surface. Courtesy of Wikimedia Commons.

Abstract:
Atomic force microscopy (AFM), a popular tool for imaging, measuring, and manipulating matter at the nanoscale, was invented in 1986 and was commercialized in 1989. This type of microscopy gathers information by feeling the surface with mechanical probes. AFM is a type of scanning probe microscopy (SPM) in which the image of a surface is obtained by moving a probe over a sample and recording the interactions between the probe and the surface of the sample.

By Kush Mangal

How Things Work: Atomic force microscopy

Pittsburgh, PA | Posted on April 26th, 2010

AFM is used for a variety of biological applications, including imaging molecules, cells, tissues, and biomaterials. At Carnegie Mellon, AFM is being used to study peptides and lipoproteins. AFM, popularly used in nanotechnology research, has been used to image the surface of the ivy plant to understand how it climbs structures, as stated in an article on www.photonics.com.

According to www.veeco.com, AFM is on the cutting edge of science since it provides true three-dimensional surface images. AFM is used to image and manipulate atoms and structures on many different surfaces. Samples viewed by AFM do not need any special treatments. The technology provides higher resolution images than other methods such as the scanning electron microscope. It is also favorable since it has the ability to operate in liquids and work with sample sizes ranging from a few nanometers up to several micrometers.

An AFM consists of several important components: a scanner (which is mounted above the tip or below the sample), a detector, and feedback controls. A cantilever moves over the surface of a sample in a scan. The cantilever is usually composed of silicon or silicon nitride, and has a sharp tip on one side that interacts with surface of a sample. The type of tip used depends on the sample it will interact with. The scanner is made from a tube of piezoelectric elements, which are materials that change shape when a certain amount of voltage is applied to them. According to the optical level method for the detector, a laser beam is shot at the tip of the cantilever and is reflected onto a position-sensitive photo-detector.

According to the book Atomic Force Microscopy: Biomedical Methods and Applications, AFM can operate in several modes: force-distance, contact, and tapping mode. In the force-distance mode, the tip will start above the surface and is brought down. When the tip is close to the surface, it sticks to it and then retracts back to the starting point. In the contact mode, the tip contacts the surface, and the tip will deflect up and down based on the sample's topography. The force feedback from the tip ensures that there is contact with the surface. Contact mode provides information about physical properties such as elasticity, adhesion, hardness, and friction. In tapping mode, the cantilever is oscillated and brought into contact with the surface. The contact with the sample is intermittent over a very short time. The changing amplitude of the oscillation provides information about the surface. Tapping mode is a better choice with soft samples since it is less damaging, while contact mode is most useful for hard surfaces.

The tip used in AFM is one of the important factors influencing the resolution obtained. The sharper the tip used, the greater the resolution. The tip can be affected by different parameters to alter the image. These are compression, interaction forces, and irregular curvatures. Compression affects studies with DNA, irregular curvatures cause broadening in the image, and interaction forces cause an increase in image contrast.

AFM is a great tool for visualization on the atomic scale. The images it provides of both conductive and nonconductive materials are valuable to researchers. AFM allows for a different way to visualize molecules in three dimensions.

####

About Carnegie Mellon University
Carnegie Mellon University is a global research university with more than 11,000 students, 75,000 active alumni, and 4,000 faculty and staff. Recognized for its world-class arts and technology programs, collaboration across disciplines and innovative leadership in education, Carnegie Mellon is consistently a top-ranked university.

For more information, please click here

Copyright © Carnegie Mellon

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Academic/Education

SUNY Poly Student Awarded Fellowship with the U.S. Department of Energy's Postgraduate Research Program: Ph.D. Candidate Accepts Postmaster's Appointment To Conduct Research At Albany NanoTech Complex November 13th, 2014

SUNY Polytechnic Institute Hosts Massive Crowd of More Than 3,000 People Who Attended Community Day Activities Across New York State: CNSE’s ‘NANOvember’ kickoff event highlights New York State’s growing high-tech sector with open house events in Albany, Utica, and Rochester November 3rd, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Tools

Renishaw receives Queen's Award for spectroscopy developments November 25th, 2014

JPK reports on the use of AFM and the CellHesion module to study plant cells at the University of Queensland November 25th, 2014

A*STAR SIMTech wins international award for breaking new ground in actuators: SIMTech invention can be used in an array of industries, and is critical for next generation ultra-precision systems November 24th, 2014

Professional AFM Images with a Three Step Click SmartScan by Park Systems Revolutionizes Atomic Force Microscopy by Automatizing the Imaging Process November 24th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE