Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Agilent Technologies and UC San Diego Collaborate on Chip-Scale Photonic Systems Testing Facility

Abstract:
Agilent Technologies Inc. (NYSE: A) and the University of California, San Diego (UCSD), today announced they have established a new chip-scale micro- and nanophotonic- systems testing facility on the UCSD campus. The new facility is part of the National Science Foundation (NSF) Major Research Instrumentation (MRI) project and is being set up in conjunction with the multi-university Center for Integrated Access Networks (CIAN), led by The University of Arizona.

Agilent Technologies and UC San Diego Collaborate on Chip-Scale Photonic Systems Testing Facility

Santa Clara and San Diego, CA | Posted on April 24th, 2010

The new Chip-Scale Photonic Testing Facility is housed in the California Institute for Telecommunications and Information Technology (Calit2) which is located on the UCSD campus. The facility will support testing and characterization of micro- and nano-scale ultra-high-speed optical components and subsystems for numerous applications, including technology for future data centers and cloud computing.

"Accurate, high-speed measurements are essential to the investigation of novel designs and fabrication techniques for nanophotonic devices," said CIAN Deputy Director Yeshaiahu Fainman, a Cymer Professor of Advanced Optical Technologies in the Electrical and Computer Engineering department of UCSD's Jacobs School of Engineering. "This testing facility will hopefully lead to closer collaborations with our industry partners. Agilent Technologies has made it possible for us to build a facility with state-of-the-art test and measurement equipment that complement the technologies deployed in other UCSD and CIAN laboratories."

A complete suite of 40 Gigabits-per-second (Gbps) test equipment will permit component-level compliance testing and troubleshooting of devices intended for NSF's MRI Data Center Testbed, further enhancing the work of Calit2 and CIAN in these areas. In the next few years, CIAN participants at UCSD expect to upgrade the basic data rates of the Chip-Scale Photonic Testing Facility from 40 Gbps to 100 Gbps (and greater). The facility also will add system- and network-level analysis capabilities, including modulation and bit-error rate measurement.

"In addition to testbeds, another major thrust of CIAN is the development of industrial collaborations and technology transfer to the private sector," said CIAN Director Nasser Peyghambarian, a professor of optics at UA. "We are delighted with the supportive role that Agilent Technologies is taking with respect to research in testbeds, industrial collaborations, technology transfer, education outreach and diversity."

"We are delighted to be associated with the CIAN research effort and to help establish the testbed facility at UCSD for CIAN," said Bill Wallace, Americas region director of university development, Agilent. "The research conducted by distinguished CIAN and UCSD faculty will enable new, affordable and flexible networks, with data service rates of 10 Gigabits-per-second. The research being conducted by CIAN is both interesting and transformational in nature."

Calit2 currently hosts a second photonics testbed at UCSD, which is one of the NSF's Engineering Research Centers. The photonics testbed is used by researchers from the nine universities participating in CIAN.

Based at the University of Arizona (UA), CIAN is designed to create transformative technology for optical access networks. Virtually any application requiring any resource can be seamlessly and efficiently aggregated and interfaced with existing and future core networks in a cost-effective manner.

UA recently began construction on a new testbed for optical aggregation networking, another NSF facility, with matching support from Agilent as well as Fujitsu Network Communications and Yokogawa Corp. of America. CIAN researchers also can access existing facilities at Columbia University for cross-layer optimization, and the University of Southern California for optical data introspection, which round out the principal sites for CIAN researchers who need specialized testing capabilities.

####

About Agilent Technologies
Agilent Technologies Inc. (NYSE: A) is the world's premier measurement company and a technology leader in communications, electronics, life sciences and chemical analysis. The company's 16,000 employees serve customers in more than 110 countries. Agilent had net revenues of $4.5 billion in fiscal 2009. Information about Agilent is available on the Web at www.agilent.com.

About CIAN
The Center for Integrated Access Networks is an NSF Engineering Research Center. It is a multi-institutional research effort based at The University of Arizona aimed at removing one of the last bottlenecks in the Internet by developing optoelectronic technologies for high-bandwidth, low-cost, widespread access and aggregation networks. Other members of CIAN include UC San Diego, Columbia University, USC, UC Berkeley, UCLA, California Institute of Technology, Norfolk State University and Tuskegee University. CIAN was created in 2008 with an $18.5 million grant from the NSF. www.cian-erc.org

About Calit2 at UC San Diego
The UC San Diego Division of the California Institute for Telecommunications and Information Technology (Calit2), together with Calit2's division at UC Irvine, house over 1,000 researchers across the two campuses, organized around more than 50 projects on the future of telecommunications and information technology and how these technologies will transform a range of applications important to the California economy and its citizens' quality of life. Calit2 will celebrate its 10th anniversary in December 2010. www.calit2.net www.ucsd.edu

For more information, please click here

Contacts:
Janet Smith, Agilent, Americas
+1 970 679 5397


Sarah Calnan, Agilent, Europe
+44 (118) 927 5101


Iris Ng, Agilent, Asia
+852 31977979


Doug Ramsey, Calit2/UC San Diego
+1 858 822-5825

Copyright © Agilent Technologies

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Openings/New facilities/Groundbreaking/Expansion

Aculon Expands NanoProof® Product Line for Electronics Waterproofing Technology: With growing market opportunities Aculon Launches NanoProof® 8 with Push Through Connectivity™ and NanoProof® DAB a syringe application May 30th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

GLOBALFOUNDRIES Expands to Meet Worldwide Customer Demand: Company invests for capacity growth in the United States, Germany, China and Singapore February 10th, 2017

Portable superconductivity systems for small motors: Cambridge University lab achieves a breakthrough for portable superconductivity systems that are applicable for small motors, health care and other uses February 8th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Chip Technology

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Nanoelectronics

Nanometrics Announces Preliminary Results for the Third Quarter of 2017: Quarterly Results Impacted by Delays in Revenue Recognition on Multiple Systems into Japan October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Columbia engineers invent breakthrough millimeter-wave circulator IC October 6th, 2017

Tungsten offers nano-interconnects a path of least resistance: Crystalline tungsten shows insight and promise in addressing the challenges of electrical interconnects that have high resistivity at the nanoscale October 4th, 2017

Announcements

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Photonics/Optics/Lasers

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

Research partnerships

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project