Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Agilent Technologies and UC San Diego Collaborate on Chip-Scale Photonic Systems Testing Facility

Abstract:
Agilent Technologies Inc. (NYSE: A) and the University of California, San Diego (UCSD), today announced they have established a new chip-scale micro- and nanophotonic- systems testing facility on the UCSD campus. The new facility is part of the National Science Foundation (NSF) Major Research Instrumentation (MRI) project and is being set up in conjunction with the multi-university Center for Integrated Access Networks (CIAN), led by The University of Arizona.

Agilent Technologies and UC San Diego Collaborate on Chip-Scale Photonic Systems Testing Facility

Santa Clara and San Diego, CA | Posted on April 24th, 2010

The new Chip-Scale Photonic Testing Facility is housed in the California Institute for Telecommunications and Information Technology (Calit2) which is located on the UCSD campus. The facility will support testing and characterization of micro- and nano-scale ultra-high-speed optical components and subsystems for numerous applications, including technology for future data centers and cloud computing.

"Accurate, high-speed measurements are essential to the investigation of novel designs and fabrication techniques for nanophotonic devices," said CIAN Deputy Director Yeshaiahu Fainman, a Cymer Professor of Advanced Optical Technologies in the Electrical and Computer Engineering department of UCSD's Jacobs School of Engineering. "This testing facility will hopefully lead to closer collaborations with our industry partners. Agilent Technologies has made it possible for us to build a facility with state-of-the-art test and measurement equipment that complement the technologies deployed in other UCSD and CIAN laboratories."

A complete suite of 40 Gigabits-per-second (Gbps) test equipment will permit component-level compliance testing and troubleshooting of devices intended for NSF's MRI Data Center Testbed, further enhancing the work of Calit2 and CIAN in these areas. In the next few years, CIAN participants at UCSD expect to upgrade the basic data rates of the Chip-Scale Photonic Testing Facility from 40 Gbps to 100 Gbps (and greater). The facility also will add system- and network-level analysis capabilities, including modulation and bit-error rate measurement.

"In addition to testbeds, another major thrust of CIAN is the development of industrial collaborations and technology transfer to the private sector," said CIAN Director Nasser Peyghambarian, a professor of optics at UA. "We are delighted with the supportive role that Agilent Technologies is taking with respect to research in testbeds, industrial collaborations, technology transfer, education outreach and diversity."

"We are delighted to be associated with the CIAN research effort and to help establish the testbed facility at UCSD for CIAN," said Bill Wallace, Americas region director of university development, Agilent. "The research conducted by distinguished CIAN and UCSD faculty will enable new, affordable and flexible networks, with data service rates of 10 Gigabits-per-second. The research being conducted by CIAN is both interesting and transformational in nature."

Calit2 currently hosts a second photonics testbed at UCSD, which is one of the NSF's Engineering Research Centers. The photonics testbed is used by researchers from the nine universities participating in CIAN.

Based at the University of Arizona (UA), CIAN is designed to create transformative technology for optical access networks. Virtually any application requiring any resource can be seamlessly and efficiently aggregated and interfaced with existing and future core networks in a cost-effective manner.

UA recently began construction on a new testbed for optical aggregation networking, another NSF facility, with matching support from Agilent as well as Fujitsu Network Communications and Yokogawa Corp. of America. CIAN researchers also can access existing facilities at Columbia University for cross-layer optimization, and the University of Southern California for optical data introspection, which round out the principal sites for CIAN researchers who need specialized testing capabilities.

####

About Agilent Technologies
Agilent Technologies Inc. (NYSE: A) is the world's premier measurement company and a technology leader in communications, electronics, life sciences and chemical analysis. The company's 16,000 employees serve customers in more than 110 countries. Agilent had net revenues of $4.5 billion in fiscal 2009. Information about Agilent is available on the Web at www.agilent.com.

About CIAN
The Center for Integrated Access Networks is an NSF Engineering Research Center. It is a multi-institutional research effort based at The University of Arizona aimed at removing one of the last bottlenecks in the Internet by developing optoelectronic technologies for high-bandwidth, low-cost, widespread access and aggregation networks. Other members of CIAN include UC San Diego, Columbia University, USC, UC Berkeley, UCLA, California Institute of Technology, Norfolk State University and Tuskegee University. CIAN was created in 2008 with an $18.5 million grant from the NSF. www.cian-erc.org

About Calit2 at UC San Diego
The UC San Diego Division of the California Institute for Telecommunications and Information Technology (Calit2), together with Calit2's division at UC Irvine, house over 1,000 researchers across the two campuses, organized around more than 50 projects on the future of telecommunications and information technology and how these technologies will transform a range of applications important to the California economy and its citizens' quality of life. Calit2 will celebrate its 10th anniversary in December 2010. www.calit2.net www.ucsd.edu

For more information, please click here

Contacts:
Janet Smith, Agilent, Americas
+1 970 679 5397


Sarah Calnan, Agilent, Europe
+44 (118) 927 5101


Iris Ng, Agilent, Asia
+852 31977979


Doug Ramsey, Calit2/UC San Diego
+1 858 822-5825

Copyright © Agilent Technologies

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Openings/New facilities/Groundbreaking/Expansion

SUNY Poly Welcomes DPS as the Global Engineering Firm Opens Its U.S. Advanced Technology Group Headquarters at Cutting-Edge ZEN Building November 20th, 2015

SUNY Poly CNSE Announces Milestone as M+W Group Opens U.S. Headquarters at Albany Nanotech Complex and Research Alliance Begins $105M Solar Power Initiative October 20th, 2015

Purdue launching new quantum center during workshop October 8th, 2015

Global Engineering Firm DPS to Establish U.S. Advanced Technology Group Headquarters at SUNY Poly CNSE and Create 56 New Jobs Under STARTUP-NY Initiative October 6th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Polar vortices observed in ferroelectric: New state of matter holds promise for ultracompact data storage and processing February 4th, 2016

Academic/Education

COD Grad Begins Postdoctoral Fellow at Harvard University: Marsela Jorgolli's Passion for Physics Has Led to a Decade of Academic Research That Continues at Harvard University as a Postdoctoral Fellow February 2nd, 2016

Heriot-Watt's Institute of Photonics & Quantum Sciences uses the Deben Microtest 2 kN tensile stage to characterise ceramics and engineering plastics January 21st, 2016

Multiple uses for the JPK NanoWizard AFM system in the Smart Interfaces in Environmental Nanotechnology Group at the University of Illinois at Urbana-Champaign January 20th, 2016

BioSolar Extends Research Agreement With UCSB for Next Phase of Its Super Battery Technology: Development Effort to Continue Under the Supervision of Nobel Laureate, Dr. Alan Heeger January 13th, 2016

Chip Technology

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Polar vortices observed in ferroelectric: New state of matter holds promise for ultracompact data storage and processing February 4th, 2016

Electrons and liquid helium advance understanding of zero-resistance: Study of electrons on liquid helium systems sheds light on zero-resistance phenomenon in semiconductors February 2nd, 2016

Nanoelectronics

Cornell researchers create first self-assembled superconductor February 1st, 2016

Spin dynamics in an atomically thin semi-conductor February 1st, 2016

New type of nanowires, built with natural gas heating: UNIST research team developed a new simple nanowire manufacturing technique February 1st, 2016

Nanosheet growth technique could revolutionize nanomaterial production February 1st, 2016

Announcements

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Photonics/Optics/Lasers

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Nature Materials: Smallest lattice structure worldwide: 3-D lattice with glassy carbon struts and braces of less than 200 nm in diameter has higher specific strength than most solids February 3rd, 2016

Silicon-based metamaterials could bring photonic circuits February 1st, 2016

Research partnerships

Polar vortices observed in ferroelectric: New state of matter holds promise for ultracompact data storage and processing February 4th, 2016

Spin dynamics in an atomically thin semi-conductor February 1st, 2016

Graphene shown to safely interact with neurons in the brain January 31st, 2016

Are some people more likely to develop adverse reactions to nanoparticle-based medicines? January 31st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic