Home > Press > Crystal Defect Shown to be Key to Making Hollow Nanotubes
![]() |
Spiraling pine tree-like nanowires created by University of Wisconsin-Madison chemistry professor Song Jin and graduate student Matthew Bierman are evidence of an entirely different way of growing the tiny wires, one that could be harnessed to make better nanowires for applications such as high performance integrated circuits, LEDs and lasers, biosensors, and solar cells. The rapid elongation of the trunks is driven by a spiral defect within them called "screw dislocation," which causes them to twist as they grow and their branches to spiral. Photo by: courtesy Song Jin |
Abstract:
Scientists have no problem making a menagerie of nanometer-sized objects - wires, tubes, belts, and even tree-like structures. What they sometimes have been unable to do is explain precisely how those objects form in the vapor and liquid cauldrons in which they are made.
Now a team led by University of Wisconsin-Madison chemist Song Jin, writing this week (April 23, 2010) in the journal Science, shows that a simple crystal defect known as a "screw dislocation" drives the growth of hollow zinc oxide nanotubes just a few millionths of a centimeter thick.
The finding is important because it provides new insight into the processes that guide the formation of the smallest manufactured structures, a significant challenge in nanoscience and nanotechnology. "We think that this work provides a general theoretical framework for controlling nanowire or nanotube growth without using metal catalysts that can be generally applicable to many materials," says Jin, a UW-Madison professor of chemistry.
Such materials and the Lilliputian structures scientists sculpt have already found broad applications in such things as electronics, solar power, battery and laser technology, and chemical and biological sensing. By further expanding the theory of how the tiny structures form, it should now be possible for scientists to develop new methods to mass produce nano-sized objects using a variety of different materials.
The method described by Jin and his colleagues depends on what scientists call a screw dislocation. Dislocations are fundamental to the growth and characteristics of all crystalline materials. As their name implies, these defects prompt the creation of spiral steps on an otherwise flawless crystal face. As atoms alight on the crystal surface, they form a structure strikingly similar in appearance to the spiral ramps of multistory parking structures. In earlier work, Jin and his research group showed that screw dislocations drive the growth of one-dimensional nanowire structures that looked like tiny pine trees. That, says Jin, was a critical clue to understanding the kinetics of spontaneous nanotube growth.
The key to understanding how to harness the defect to make nanostructures in a rational way, Jin explains, is knowing that as atoms collect on a surface of a dislocation spiral, strain associated with screw dislocations builds up in the tiny structures they create.
It turns out that "making the structure hollow and making it twist are two good ways of relieving such strain and stress," Jin explains. "In some cases, the large screw dislocation strain energy contained within the nanomaterial dictates that the material hollow out its center around the dislocation, thus resulting in the spontaneous formation of nanotubes."
The phenomenon described in the new Wisconsin work differs in significant ways from traditional mechanisms of making hollow nanostructures. Scientists now use templates to "mold" nanotubes or, alternatively, a diffusion process to convert one material into another with a hollow core. Carbon nanotubes are made, essentially, by rolling up a single honeycomb-patterned layer of carbon atoms.
The phenomena described by the Wisconsin team, Jin adds, should apply to materials beyond zinc oxide: "The understanding of the formation of nanotubes will certainly help us to understand related phenomena in other materials."
Refined, the new knowledge could ultimately be turned to the large scale, low cost production of nanomaterials for a wide range of applications. Most promising, says Jin, is the area of renewable energy where large amounts of such materials can be deployed to convert sunlight to electricity, and provide new raw materials for battery electrodes and thermoelectric devices.
The new work in Jin's lab was carried out by graduate students Stephen A. Morin and Matthew J. Bierman, with assistance from a former undergraduate student Jonathan Tong, all of UW-Madison. The work was funded primarily by National Science Foundation.
####
For more information, please click here
Contacts:
Terry Devitt
(608) 262-8282
Copyright © University of Wisconsin-Madison
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018
Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018
New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018
Observing biological nanotransporters: Chemistry April 19th, 2018
Chemistry
Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018
Phononic SEIRA -- enhancing light-molecule interactions via crystal lattice vibrations April 10th, 2018
New 4-D printer could reshape the world we live in March 20th, 2018
Govt.-Legislation/Regulation/Funding/Policy
Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018
Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018
Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018
Quantum shift shows itself in coupled light and matter: Rice University scientists corral, quantify subtle movement in condensed matter system April 16th, 2018
Possible Futures
Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018
Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018
New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018
Observing biological nanotransporters: Chemistry April 19th, 2018
Nanotubes/Buckyballs/Fullerenes/Nanorods
Plasmons triggered in nanotube quantum wells: Rice, Tokyo Metropolitan scientists create platform for unique near-infrared devices March 16th, 2018
Big steps toward control of production of tiny building blocks March 9th, 2018
Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018
Touchy nanotubes work better when clean: Rice, Swansea scientists show that decontaminating nanotubes can simplify nanoscale devices January 4th, 2018
Announcements
Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018
Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018
New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018
Observing biological nanotransporters: Chemistry April 19th, 2018
Energy
Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018
Psst! A whispering gallery for light boosts solar cells April 14th, 2018
Light 'relaxes' crystal to boost solar cell efficiency: Rice, Los Alamos discovery advances case for perovskite-based solar cells April 6th, 2018
Solar/Photovoltaic
Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018
Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018
Psst! A whispering gallery for light boosts solar cells April 14th, 2018
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |