Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Crystal Defect Shown to be Key to Making Hollow Nanotubes

Spiraling pine tree-like nanowires created by University of Wisconsin-Madison chemistry professor Song Jin and graduate student Matthew Bierman are evidence of an entirely different way of growing the tiny wires, one that could be harnessed to make better nanowires for applications such as high performance integrated circuits, LEDs and lasers, biosensors, and solar cells. The rapid elongation of the trunks is driven by a spiral defect within them called "screw dislocation," which causes them to twist as they grow and their branches to spiral. Photo by: courtesy Song Jin
Spiraling pine tree-like nanowires created by University of Wisconsin-Madison chemistry professor Song Jin and graduate student Matthew Bierman are evidence of an entirely different way of growing the tiny wires, one that could be harnessed to make better nanowires for applications such as high performance integrated circuits, LEDs and lasers, biosensors, and solar cells. The rapid elongation of the trunks is driven by a spiral defect within them called "screw dislocation," which causes them to twist as they grow and their branches to spiral. Photo by: courtesy Song Jin

Abstract:
Scientists have no problem making a menagerie of nanometer-sized objects - wires, tubes, belts, and even tree-like structures. What they sometimes have been unable to do is explain precisely how those objects form in the vapor and liquid cauldrons in which they are made.

Crystal Defect Shown to be Key to Making Hollow Nanotubes

Madison, WI | Posted on April 24th, 2010

Now a team led by University of Wisconsin-Madison chemist Song Jin, writing this week (April 23, 2010) in the journal Science, shows that a simple crystal defect known as a "screw dislocation" drives the growth of hollow zinc oxide nanotubes just a few millionths of a centimeter thick.

The finding is important because it provides new insight into the processes that guide the formation of the smallest manufactured structures, a significant challenge in nanoscience and nanotechnology. "We think that this work provides a general theoretical framework for controlling nanowire or nanotube growth without using metal catalysts that can be generally applicable to many materials," says Jin, a UW-Madison professor of chemistry.

Such materials and the Lilliputian structures scientists sculpt have already found broad applications in such things as electronics, solar power, battery and laser technology, and chemical and biological sensing. By further expanding the theory of how the tiny structures form, it should now be possible for scientists to develop new methods to mass produce nano-sized objects using a variety of different materials.

The method described by Jin and his colleagues depends on what scientists call a screw dislocation. Dislocations are fundamental to the growth and characteristics of all crystalline materials. As their name implies, these defects prompt the creation of spiral steps on an otherwise flawless crystal face. As atoms alight on the crystal surface, they form a structure strikingly similar in appearance to the spiral ramps of multistory parking structures. In earlier work, Jin and his research group showed that screw dislocations drive the growth of one-dimensional nanowire structures that looked like tiny pine trees. That, says Jin, was a critical clue to understanding the kinetics of spontaneous nanotube growth.

The key to understanding how to harness the defect to make nanostructures in a rational way, Jin explains, is knowing that as atoms collect on a surface of a dislocation spiral, strain associated with screw dislocations builds up in the tiny structures they create.

It turns out that "making the structure hollow and making it twist are two good ways of relieving such strain and stress," Jin explains. "In some cases, the large screw dislocation strain energy contained within the nanomaterial dictates that the material hollow out its center around the dislocation, thus resulting in the spontaneous formation of nanotubes."

The phenomenon described in the new Wisconsin work differs in significant ways from traditional mechanisms of making hollow nanostructures. Scientists now use templates to "mold" nanotubes or, alternatively, a diffusion process to convert one material into another with a hollow core. Carbon nanotubes are made, essentially, by rolling up a single honeycomb-patterned layer of carbon atoms.

The phenomena described by the Wisconsin team, Jin adds, should apply to materials beyond zinc oxide: "The understanding of the formation of nanotubes will certainly help us to understand related phenomena in other materials."

Refined, the new knowledge could ultimately be turned to the large scale, low cost production of nanomaterials for a wide range of applications. Most promising, says Jin, is the area of renewable energy where large amounts of such materials can be deployed to convert sunlight to electricity, and provide new raw materials for battery electrodes and thermoelectric devices.

The new work in Jin's lab was carried out by graduate students Stephen A. Morin and Matthew J. Bierman, with assistance from a former undergraduate student Jonathan Tong, all of UW-Madison. The work was funded primarily by National Science Foundation.

####

For more information, please click here

Contacts:
Terry Devitt
(608) 262-8282

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

Iranian Scientists Determine Grain Size, Minimize Time of Nanocomposite Synthesis September 29th, 2014

Nanoparticles Used to Improve Quality of Bone Cement September 29th, 2014

Chemistry

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

Govt.-Legislation/Regulation/Funding/Policy

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems September 29th, 2014

UT Arlington researchers develop transparent nanoscintillators for radiation detection for medical safety and homeland security September 29th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Nanotubes/Buckyballs

Elsevier Publishes New Content on Graphene and Materials Science: Books Discuss Properties and Emerging Applications of Carbon Nanotubes, Graphene and Nanomaterials September 25th, 2014

Future flexible electronics based on carbon nanotubes: Study in Applied Physics Letters show how to improve nanotube transistor and circuit performance with fluoropolymers September 23rd, 2014

Nanotubes help healing hearts keep the beat: Rice University, Texas Children’s Hospital patch for defects enhances electrical connections between cells September 23rd, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Announcements

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

Iranian Scientists Determine Grain Size, Minimize Time of Nanocomposite Synthesis September 29th, 2014

Nanoparticles Used to Improve Quality of Bone Cement September 29th, 2014

Energy

Production of Anticorrosive Chromate Nanocoatings in Iran September 27th, 2014

University of Electro-Communications research: High density quantum dots for powerful solar cells September 25th, 2014

On the Road to Artificial Photosynthesis: Berkeley Lab Study Reveals Key Catalytic Factors in Carbon Dioxide Reduction September 25th, 2014

Solar cell compound probed under pressure September 25th, 2014

Solar/Photovoltaic

University of Electro-Communications research: High density quantum dots for powerful solar cells September 25th, 2014

On the Road to Artificial Photosynthesis: Berkeley Lab Study Reveals Key Catalytic Factors in Carbon Dioxide Reduction September 25th, 2014

Solar cell compound probed under pressure September 25th, 2014

Quick Method Found for Synthesis of Organic Compounds with Less Pollution September 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE