Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Bizarre matter could find use in quantum computers

From left, Rice University physicist Rui-Rui Du, graduate students Chi Zhang and Yanhua Dai, and former postdoctoral researcher Tauno Knuuttila (not pictured) have found that odd groupings of ultracold electrons could be useful in making fault-tolerant quantum computers. PHOTO CREDIT: Jeff Fitlow/Rice University
From left, Rice University physicist Rui-Rui Du, graduate students Chi Zhang and Yanhua Dai, and former postdoctoral researcher Tauno Knuuttila (not pictured) have found that odd groupings of ultracold electrons could be useful in making fault-tolerant quantum computers. PHOTO CREDIT: Jeff Fitlow/Rice University

Abstract:
Rice physicists: Odd electron mix has fault-tolerant quantum registry

Bizarre matter could find use in quantum computers

Houston, TX | Posted on April 22nd, 2010

There are enticing new findings this week in the worldwide search for materials that support fault-tolerant quantum computing. New results from Rice University and Princeton University indicate that a bizarre state of matter that acts like a particle with one-quarter electron charge also has a "quantum registry" that is immune to information loss from external perturbations.

The research appeared online April 21 in Physical Review Letters. The team of physicists found that ultracold mixes of electrons caught in magnetic traps could have the necessary properties for constructing fault-tolerant quantum computers -- future computers that could be far more powerful than today's computers. The mixes of electrons are dubbed "5/2 quantum Hall liquids" in reference to the unusual quantum properties that describe their makeup.

"The big goal, the whole driving force, besides deep academic curiosity, is to build a quantum computer out of this," said the study's lead author Rui-Rui Du, professor of physics at Rice. "The key for that is whether these 5/2 liquids have 'topological' properties that would render them immune to the sorts of quantum perturbations that could cause information degradation in a quantum computer."

Du said the team's results indicate the 5/2 liquids have the desired properties. In the parlance of condensed-matter physics, they are said to represent a "non-Abelian" state of matter.

Non-Abelian is a mathematical term for a system with "noncommutative" properties. In math, commutative operations, like addition, are those that have the same outcome regardless of the order in which they are carried out. So, one plus two equals three, just as two plus one equals three. In daily life, commutative and noncommutative tasks are commonplace. For example, when doing the laundry, it doesn't matter if the detergent is added before the water or the water before the detergent, but it does matter if the clothes are washed before they're placed in the dryer.

"It will take a while to fully understand the complete implications of our results, but it is clear that we have nailed down the evidence for 'spin polarization,' which is one of the two necessary conditions that must be proved to show that the 5/2 liquids are non-Abelian," Du said. "Other research teams have been tackling the second condition, the one-quarter charge, in previous experiments."

The importance of the noncommutative quantum properties is best understood within the context of fault-tolerant quantum computers, a fundamentally new type of computer that hasn't been built yet.

Computers today are binary. Their electrical circuits, which can be open or closed, represent the ones and zeros in binary bits of information. In quantum computers, scientists hope to use "quantum bits," or qubits. Unlike binary ones and zeros, the qubits can be thought of as little arrows that represent the position of a bit of quantum matter. The arrow might represent a one if it points straight up or a zero if it points straight down, but it could also represent any number in between. In physics parlance, these arrows are called quantum "states." And for certain complex calculations, being able to represent information in many different states would present a great advantage over binary computing.

The upshot of the 5/2 liquids being non-Abelian is that they have a sort of "quantum registry," where information doesn't change due to external quantum perturbations.

"In a way, they have internal memory of their previous state," Du said.

The conditions needed to create the 5/2 liquids are extreme. At Rice, Tauno Knuuttila, a former postdoctoral research scientist in Du's group, spent several years building the "demagnetization refrigerator" needed to cool 5-millimeter squares of ultrapure semiconductors to within one-10,000th of a degree of absolute zero. It took a week for Knuuttila to simply cool the nearly one-ton instrument to the necessary temperature for the Rice experiments.

The gallium arsenide semiconductors used in the tests are the most pure on the planet. They were created by Loren Pfieiffer, Du's longtime collaborator at Princeton and Bell Labs. Rice graduate student Chi Zhang conducted additional tests at the National High Magnetic Field Laboratory in Tallahassee, Fla., to verify that the 5/2 liquid was spin- polarized.

Study co-authors include Zhang, Knuuttila, Pfeiffer, Princeton's Ken West and Rice's Yanhua Dai. The research is supported by the Department of Energy, the National Science Foundation and the Keck Foundation.

####

About Rice University
Located in Houston, Rice University is consistently ranked one of America's best teaching and research universities. Known for its "unconventional wisdom," Rice is distinguished by its: size -- 3,279 undergraduates and 2,277 graduate students; selectivity -- 12 applicants for each place in the freshman class; resources -- an undergraduate student-to-faculty ratio of 5-to-1; sixth largest endowment per student among American private research universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work.

For more information, please click here

Contacts:
Jade Boyd
Associate Director and Science Editor
Office of Public Affairs/News & Media Relations
Rice University
(office) 713-348-6778
(cell) 713-302-2447

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Pixelligent Launches New PixClear® Light Extraction Materials for OLED Lighting August 4th, 2015

The annual meeting on High Power Diode Lasers & Systems will be held as part of the Enlighten Conference, October 14th & 15th August 4th, 2015

Atomic view of microtubules: Berkeley Lab researchers achieve record 3.5 angstroms resolution and visualize action of a major microtubule-regulating protein August 4th, 2015

World's quietest gas lets physicists hear faint quantum effects August 4th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Atomic view of microtubules: Berkeley Lab researchers achieve record 3.5 angstroms resolution and visualize action of a major microtubule-regulating protein August 4th, 2015

Small tilt in magnets makes them viable memory chips August 3rd, 2015

Vaccine with virus-like nanoparticles effective treatment for RSV, study finds August 3rd, 2015

MIPT researchers clear the way for fast plasmonic chips August 3rd, 2015

Possible Futures

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Nanozirconia Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Self-Healing Nano Anti-rust Coatings Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nano Spray Instrument Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Quantum Computing

Quantum states in a nano-object manipulated using a mechanical system August 3rd, 2015

Quantum networks: Back and forth are not equal distances! July 28th, 2015

The quantum middle man July 2nd, 2015

Freezing single atoms to absolute zero with microwaves brings quantum technology closer: Atoms frozen to absolute zero using microwaves July 2nd, 2015

Discoveries

Atomic view of microtubules: Berkeley Lab researchers achieve record 3.5 angstroms resolution and visualize action of a major microtubule-regulating protein August 4th, 2015

World's quietest gas lets physicists hear faint quantum effects August 4th, 2015

Artificial blood vessels become resistant to thrombosis August 4th, 2015

Engineering a better 'Do: Purdue researchers are learning how August 4th, 2015

Announcements

Artificial blood vessels become resistant to thrombosis August 4th, 2015

Engineering a better 'Do: Purdue researchers are learning how August 4th, 2015

Proving nanoparticles in sunscreen products August 4th, 2015

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Quantum nanoscience

World's quietest gas lets physicists hear faint quantum effects August 4th, 2015

Quantum states in a nano-object manipulated using a mechanical system August 3rd, 2015

Solid state physics: Quantum matter stuck in unrest August 1st, 2015

Theoretical Physicists at Freie Universität Berlin Develop New Insights into Interface between Classical and Quantum Worlds July 31st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project