Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Advance made in “thin film” solar cell technology

Chih-hung Chang, an associate professor of chemical engineering at Oregon State University, is developing new approaches to solar energy that may dramatically lower their cost while reducing waste and environmental impacts. (Photo courtesy of Oregon State University)
Chih-hung Chang, an associate professor of chemical engineering at Oregon State University, is developing new approaches to solar energy that may dramatically lower their cost while reducing waste and environmental impacts. (Photo courtesy of Oregon State University)

Abstract:
Researchers have made an important breakthrough in the use of continuous flow microreactors to produce thin film absorbers for solar cells - an innovative technology that could significantly reduce the cost of solar energy devices and reduce material waste.

Advance made in “thin film” solar cell technology

Corvallis, OR | Posted on April 21st, 2010

The advance was just reported in Current Applied Physics, a professional journal, by engineers from Oregon State University and Yeungnam University in Korea.

This is one of the first demonstrations that this type of technology, which is safer, faster and more economical than previous chemical solution approaches, could be used to continuously and rapidly deposit thin film absorbers for solar cells from such compounds as copper indium diselenide.

Previous approaches to use this compound - which is one of the leading photovoltaic alternatives to silicon-based solar energy devices - have depended on methods such as sputtering, evaporation, and electrodeposition. Those processes can be time consuming, or require expensive vacuum systems or exotic chemicals that raise production costs.

Chemical bath deposition is a low-cost deposition technique that was developed more than a century ago. It is normally performed as a batch process, but changes in the growth solution over time make it difficult to control thickness. The depletion of reactants also limits the achievable thickness.

The technology invented at OSU to deposit "nanostructure films" on various surfaces in a continuous flow microreactor, however, addresses some of these issues and makes the use of this process more commercially practical. A patent has been applied for on this approach, officials said.

"We've now demonstrated that this system can produce thin-film solar absorbers on a glass substrate in a short time, and that's quite significant," said Chih-hung Chang, an associate professor in the OSU School of Chemical, Biological and Environmental Engineering. "That's the first time this has been done with this new technique."

Further work is still needed on process control, testing of the finished solar cell, improving its efficiency to rival that of vacuum-based technology, and scaling up the process to a commercial application, Chang said.

Of some interest, researchers said, is that thin-film solar cells produced by applications such as this could ultimately be used in the creation of solar energy roofing systems. Conceptually, instead of adding solar panels on top of the roof of a residential or industrial building, the solar panel itself would become the roof, eliminating such traditional approaches as plywood and shingles.

"If we could produce roofing products that cost-effectively produced solar energy at the same time, that would be a game changer," Chang said. "Thin film solar cells are one way that might work. All solar applications are ultimately a function of efficiency, cost and environmental safety, and these products might offer all of that."

The research has been supported by the Process and Reaction Engineering Program of the National Science Foundation.

Related technology was also developed recently at OSU using nanostructure films as coatings for eyeglasses, which may cost less and work better than existing approaches. In that case, they would help capture more light, reduce glare and also reduce exposure to ultraviolet light. Scientists believe applications in cameras and other types of lenses are also possible.

More work such as this is expected to emerge from the new Oregon Process Innovation Center for Sustainable Solar Cell Manufacturing, a $2.7 million initiative based at OSU that will include the efforts of about 20 faculty from OSU, the University of Oregon, Portland State University and the Pacific Northwest National Laboratory.

Organizers of that initiative say they are aiming for "a revolution in solar cell processing and manufacturing" that might drop costs by as much as 50 percent while being more environmentally sensitive. In the process, they hope to create new jobs and industries in the Pacific Northwest.

####

About Oregon State University
About the OSU College of Engineering: The OSU College of Engineering is among the nation’s largest and most productive engineering programs. In the past six years, the College has more than doubled its research expenditures to $27.5 million by emphasizing highly collaborative research that solves global problems, spins out new companies, and produces opportunity for students through hands-on learning.

For more information, please click here

Contacts:
Media Contact
David Stauth
541-737-0787

Source
Chih-hung Chang
541-737-8548

Copyright © Oregon State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Thin films

LAMDAMAP 2015 hosted by the University March 26th, 2015

A new method for making perovskite solar cells March 16th, 2015

Engineers create chameleon-like artificial 'skin' that shifts color on demand March 12th, 2015

Researchers synthesize new thin-film material for use in fuel cells: Article in the journal APL Materials shows how to grow Bi2Pt2O7 pyrochlore, potentially a more effective cathode for future fuel cells March 10th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Possible Futures

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Nanotechnology Drug Delivery Market in the US 2012-2016 : Latest Report Available by Radiant Insights, Inc March 16th, 2015

Announcements

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Energy

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

Hong Kong Investors Bullish on Dais Analytic Invest $5.75M, Provide $60M Contract, and Create New Joint Venture Company March 26th, 2015

Research partnerships

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

ORNL-led team demonstrates desalination with nanoporous graphene membrane March 25th, 2015

New kind of 'tandem' solar cell developed: Researchers combine 2 types of photovoltaic material to make a cell that harnesses more sunlight March 24th, 2015

UW scientists build a nanolaser using a single atomic sheet March 24th, 2015

Solar/Photovoltaic

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

New kind of 'tandem' solar cell developed: Researchers combine 2 types of photovoltaic material to make a cell that harnesses more sunlight March 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE