Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Junctionless transistor outperforms nanowire MOSFET

Schematic representation of the cylindrical wrap-around gate nanowire
Schematic representation of the cylindrical wrap-around gate nanowire

Abstract:
The nanowire pinch-off field effect transistor (FET) or junctionless transistor is a uniformly doped nanowire without junctions with a wrap-around gate. The idea and basic working principle of the nanowire pinch-off transistor were developed in imec and already reported in 2007 and 2008. Recent modeling results obtained in imec for a GaAs and Si nanowire indicate that the nanowire pinch-off FET can outperform the nanowire MOSFET. These results combined with scalability and ease of processing make the junctionless transistor a true competitor for the nanowire MOSFET.

Junctionless transistor outperforms nanowire MOSFET

The Netherlands | Posted on April 21st, 2010

Several years ago, imec theoreticians developed the concept of the pinch-off nanowire FET. Originally, the idea was to avoid surface interactions such as surface roughness scattering or high-k surface phonon scattering wich degrade the charge carrier mobility, by moving the charge carriers away from the interface between the substrate and the insulator. The solution to this problem was to consider a nanowire where source, drain and channel are uniformly doped. For a n-type nanowire pinch-off FET, the charge carriers responsible for the current are delivered by the ionized donors. As the gate voltage is increased, the channel of the wire is depleted and, eventually, pinch-off will occur.

More detailed results about the idea and basic working principle of the nanowire pinch-off FET as proposed by imec can be found in:
[1] Sorée, B.; Magnus, W.; Pourtois, G. Analytical and self-consistent quantum mechanical model for a JFET nanowire. In: IWCE12. 2007. (8-10 October 2007; Amherst, NJ, USA.)
[2] Sorée, B.; Magnus, W.; Pourtois, G. Analytical and self-consistent quantum mechanical model for a surrounding gate MOS nanowire operated in JFET mode. JCEL. Vol. 7: (3) 380-383; 2008.

####

About imec
Imec is Europe’s largest independent research center in nanoelectronics and nano-technology. Its staff of more than 1,750 people includes over 550 industrial residents and guest researchers. Imec’s research is applied in better healthcare, smart electronics, sustainable energy, and safer transport.

For more information, please click here

Copyright © imec

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Chip Technology

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Nanoelectronics

Viewing atomic structures of dopant atoms in 3-D relating to electrical activity in a semiconductor December 28th, 2017

Electronically-smooth '3-D graphene': A bright future for trisodium bismuthide: Electronically-smooth nature of trisodium bismuthide makes it a viable alternative to graphene/h-BN December 22nd, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

GLOBALFOUNDRIES, Fudan Team to Deliver Next Generation Dual Interface Smart Card November 14th, 2017

Announcements

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project