Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

android tablet pc

Home > Press > Junctionless transistor outperforms nanowire MOSFET

Schematic representation of the cylindrical wrap-around gate nanowire
Schematic representation of the cylindrical wrap-around gate nanowire

The nanowire pinch-off field effect transistor (FET) or junctionless transistor is a uniformly doped nanowire without junctions with a wrap-around gate. The idea and basic working principle of the nanowire pinch-off transistor were developed in imec and already reported in 2007 and 2008. Recent modeling results obtained in imec for a GaAs and Si nanowire indicate that the nanowire pinch-off FET can outperform the nanowire MOSFET. These results combined with scalability and ease of processing make the junctionless transistor a true competitor for the nanowire MOSFET.

Junctionless transistor outperforms nanowire MOSFET

The Netherlands | Posted on April 21st, 2010

Several years ago, imec theoreticians developed the concept of the pinch-off nanowire FET. Originally, the idea was to avoid surface interactions such as surface roughness scattering or high-k surface phonon scattering wich degrade the charge carrier mobility, by moving the charge carriers away from the interface between the substrate and the insulator. The solution to this problem was to consider a nanowire where source, drain and channel are uniformly doped. For a n-type nanowire pinch-off FET, the charge carriers responsible for the current are delivered by the ionized donors. As the gate voltage is increased, the channel of the wire is depleted and, eventually, pinch-off will occur.

More detailed results about the idea and basic working principle of the nanowire pinch-off FET as proposed by imec can be found in:
[1] Sorée, B.; Magnus, W.; Pourtois, G. Analytical and self-consistent quantum mechanical model for a JFET nanowire. In: IWCE12. 2007. (8-10 October 2007; Amherst, NJ, USA.)
[2] Sorée, B.; Magnus, W.; Pourtois, G. Analytical and self-consistent quantum mechanical model for a surrounding gate MOS nanowire operated in JFET mode. JCEL. Vol. 7: (3) 380-383; 2008.


About imec
Imec is Europe’s largest independent research center in nanoelectronics and nano-technology. Its staff of more than 1,750 people includes over 550 industrial residents and guest researchers. Imec’s research is applied in better healthcare, smart electronics, sustainable energy, and safer transport.

For more information, please click here

Copyright © imec

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

'Life Redesigned: The Emergence of Synthetic Biology' Lecture at Brookhaven Lab on Wednesday, April 30: Biomedical Engineer James Collins to Speak for BSA Distinguished Lecture Series April 16th, 2014

ECHA Planning Workshop on Regulatory Challenges in the Risk Assessment of Nanomaterials April 16th, 2014

Lumerical files a provisional patent that extends the standard eigenmode expansion propagation technique to better address waveguide component design. Lumerical’s EME propagation tool will address a wide set of waveguide applications in silicon photonics and integrated optics April 16th, 2014

Chip Technology

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

Obducat has launched a new generation of SINDRE® Nano Imprint production system April 11th, 2014

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014

Clean Shot at Manufacturing Course…For Less April 9th, 2014


Better solar cells, better LED light and vast optical possibilities April 12th, 2014

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Preview of Hands-on Nanotechnology Demos at ‘Chemistry of Wine’ Fundraiser to Show Nanotech Magic April 8th, 2014


UT Arlington physicist creates new nanoparticle for cancer therapy April 16th, 2014

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Aerotech X-Y ball-screw stage for economical high performance Planar positioning April 16th, 2014

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE