Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Sensor gives valuable data for neurological diseases and treatments

Abstract:
A new biosensor developed at Purdue University can measure whether neurons are performing correctly when communicating with each other, giving researchers a tool to test the effectiveness of new epilepsy or seizure treatments.

Sensor gives valuable data for neurological diseases and treatments

West Lafayette, IN | Posted on April 20th, 2010

Marshall Porterfield, an associate professor of agricultural and biological engineering and biomedical engineering, postdoctoral researcher Eric McLamore, and graduate student Subhashree Mohanty developed the self-referencing glutamate biosensor to measure real-time glutamate flux of neural cells in a living organism. The nanosensor not only measures glutamate around neural cells, it can tell how those cells are releasing or taking up glutamate, a key to those cells' health and activity.

"Before we did this, people were only getting at glutamate indirectly or through huge, invasive probes," said Porterfield, whose research was published in the early online version of the Journal of Neuroscience Methods. "With this sensor, we can 'listen' to glutamate signaling from the cells."

The firing of neurons is involved in every action or movement in a human body. Neurons work electrically, but ultimately communicate with each other through chemical neurotransmitters such as glutamate. One neuron will release glutamate to convey information to the next neuron's cell receptors.

Once the message is delivered, neurons are supposed to reabsorb or clear out the glutamate signal. It is believed that when neurons release too much or too little glutamate and are not able to clear it properly, people are prone to neurological diseases.


ABSTRACT

A Self-Referencing Glutamate Biosensor for Measuring Real-Time Neuronal Glutamate Flux

E.S. McLamore, S. Mohanty, J. Shi, J. Claussen, J.L. Rickus, S.S. Jedlicka, D.M. Porterfield

Quantification of neurotransmitter transport dynamics is hindered by a lack of sufficient tools to directly monitor bioactive flux under physiological conditions. Traditional techniques for studying neurotransmitter release/uptake require inferences from non-selective electrical recordings, are invasive/destructive, and/or suffer from poor temporal resolution. Recent advances in electrochemical biosensors have enhanced in vitro and in vivo detection of neurotransmitter concentration under physiological/pathophysiological conditions. The use of enzymatic biosensors with performance enhancing materials (e.g., carbon nanotubes) has been a major focus for many of these advances. However, these techniques are not used as mainstream neuroscience research tools, due to relatively low sensitivity, excessive drift/noise, low signal-to-noise ratio, and inability to quantify rapid neurochemical kinetics during synaptic transmission. A sensing technique known as self-referencing overcomes many of these problems, and allows non-invasive quantification of biophysical transport. This work presents a self-referencing CNT modified glutamate oxidase biosensor for monitoring glutamate flux near neural/neuronal cells. Concentration of basal glutamate was similar to other in vivo and in vitro measurements. The biosensor was used in self-referencing (oscillating) mode to measure net glutamate flux near neural cells during electrical stimulation. Prior to stimulation, the average in?ux was 33.9 � 6.4 fmol cm-2s-1). Glutamate efflux took place immediately following stimulation, and was always followed by uptake in the 50-150 fmol cm-2s-1 range. Uptake was inhibited using threo--benzyloxyaspartate, and average surface flux in replicate cells (1.1 � 7.4 fmol cm-2s-1) was significantly lower than uninhibited cells. The technique is extremely valuable for studying neuropathological conditions related to neurotransmission under dynamic physiological conditions.


Jenna Rickus, an associate professor of agricultural and biological engineering and biomedical engineering who oversaw the study's neurological aspects, said researchers need more information about how neurons work to create more effective treatments for neurological disorders.

"Understanding neurotransmitter dynamics has implications for almost all normal and pathological brain function," Rickus said. "The reason we don't have good information is because we haven't had a good measurement tool before."

Porterfield and McLamore's sensor exploits conductive carbon nanotubes and is only 2 micrometers in diameter, or about 50 times smaller than the diameter of a human hair. They also use an enzyme, called glutamate oxidase, on the end of the probe that reacts with glutamate to create hydrogen peroxide. The carbon nanotubes enhance the conductivity of the hydrogen peroxide, and a computer can calculate the movement of glutamate relative to the cell surface.

The sensor oscillates and samples the concentration activities of glutamate at various positions relative to the neurons in culture. Those measurements at different distances can tell researchers whether the glutamate is flowing back toward the neurons or dissipating in many directions.

Current sensor technology allows for sensing in vitro, but those probes are large and invasive, Porterfield said, and they don't measure the movement of the chemicals.

McLamore said the sensor also is valuable because it is able to hone in on only glutamate using just one probe and custom software that filters out variations in the signals that are read, which removes signal noise due to other compounds.

"There are many compounds present near the neurons which can potentially create noise, but this sensor should be selective for one compound. We filter out all of the background noise," McLamore said. "It's the same thing modern hearing aids do. They're filtering out ambient noises, and that's the same thing you get when you oscillate a biosensor."

The sensor also could be adapted to measure other chemicals by changing the enzyme used on its tip.

Rickus said the sensor's versatility would be valuable for understanding the effects of therapies for epilepsy, Parkinson's disease, damage caused by chemotherapy, memory loss and many other conditions. The sensor will give valuable data on how damaged neurons function and how drugs or therapies affect those cells.

Porterfield said the next step is to make small improvements to the sensor and adapt it to use other enzymes. The Office of Naval Research funded the research.

####

For more information, please click here

Contacts:
Writer: Brian Wallheimer,
765-496-2050,

Sources: Marshall Porterfield,
765-494-1190,

Jenna Rickus, 765-494-1197,

Eric McLamore, 806-239-9556,

Ag Communications: (765) 494-8415;
Steve Leer,

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Possible Futures

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Killing cancer in the heat of the moment: A new method efficiently transfers genes into cells, then activates them with light. This could lead to gene therapies for cancers July 9th, 2017

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

Nanomedicine

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Sensors

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

Giant enhancement of electromagnetic waves revealed within small dielectric particles: Scientists have done for the first time direct measurements of giant electromagnetic fields July 8th, 2017

Announcements

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Nanobiotechnology

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project