Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Sensor gives valuable data for neurological diseases and treatments

Abstract:
A new biosensor developed at Purdue University can measure whether neurons are performing correctly when communicating with each other, giving researchers a tool to test the effectiveness of new epilepsy or seizure treatments.

Sensor gives valuable data for neurological diseases and treatments

West Lafayette, IN | Posted on April 20th, 2010

Marshall Porterfield, an associate professor of agricultural and biological engineering and biomedical engineering, postdoctoral researcher Eric McLamore, and graduate student Subhashree Mohanty developed the self-referencing glutamate biosensor to measure real-time glutamate flux of neural cells in a living organism. The nanosensor not only measures glutamate around neural cells, it can tell how those cells are releasing or taking up glutamate, a key to those cells' health and activity.

"Before we did this, people were only getting at glutamate indirectly or through huge, invasive probes," said Porterfield, whose research was published in the early online version of the Journal of Neuroscience Methods. "With this sensor, we can 'listen' to glutamate signaling from the cells."

The firing of neurons is involved in every action or movement in a human body. Neurons work electrically, but ultimately communicate with each other through chemical neurotransmitters such as glutamate. One neuron will release glutamate to convey information to the next neuron's cell receptors.

Once the message is delivered, neurons are supposed to reabsorb or clear out the glutamate signal. It is believed that when neurons release too much or too little glutamate and are not able to clear it properly, people are prone to neurological diseases.


ABSTRACT

A Self-Referencing Glutamate Biosensor for Measuring Real-Time Neuronal Glutamate Flux

E.S. McLamore, S. Mohanty, J. Shi, J. Claussen, J.L. Rickus, S.S. Jedlicka, D.M. Porterfield

Quantification of neurotransmitter transport dynamics is hindered by a lack of sufficient tools to directly monitor bioactive flux under physiological conditions. Traditional techniques for studying neurotransmitter release/uptake require inferences from non-selective electrical recordings, are invasive/destructive, and/or suffer from poor temporal resolution. Recent advances in electrochemical biosensors have enhanced in vitro and in vivo detection of neurotransmitter concentration under physiological/pathophysiological conditions. The use of enzymatic biosensors with performance enhancing materials (e.g., carbon nanotubes) has been a major focus for many of these advances. However, these techniques are not used as mainstream neuroscience research tools, due to relatively low sensitivity, excessive drift/noise, low signal-to-noise ratio, and inability to quantify rapid neurochemical kinetics during synaptic transmission. A sensing technique known as self-referencing overcomes many of these problems, and allows non-invasive quantification of biophysical transport. This work presents a self-referencing CNT modified glutamate oxidase biosensor for monitoring glutamate flux near neural/neuronal cells. Concentration of basal glutamate was similar to other in vivo and in vitro measurements. The biosensor was used in self-referencing (oscillating) mode to measure net glutamate flux near neural cells during electrical stimulation. Prior to stimulation, the average in?ux was 33.9 � 6.4 fmol cm-2s-1). Glutamate efflux took place immediately following stimulation, and was always followed by uptake in the 50-150 fmol cm-2s-1 range. Uptake was inhibited using threo-ß-benzyloxyaspartate, and average surface flux in replicate cells (1.1 � 7.4 fmol cm-2s-1) was significantly lower than uninhibited cells. The technique is extremely valuable for studying neuropathological conditions related to neurotransmission under dynamic physiological conditions.


Jenna Rickus, an associate professor of agricultural and biological engineering and biomedical engineering who oversaw the study's neurological aspects, said researchers need more information about how neurons work to create more effective treatments for neurological disorders.

"Understanding neurotransmitter dynamics has implications for almost all normal and pathological brain function," Rickus said. "The reason we don't have good information is because we haven't had a good measurement tool before."

Porterfield and McLamore's sensor exploits conductive carbon nanotubes and is only 2 micrometers in diameter, or about 50 times smaller than the diameter of a human hair. They also use an enzyme, called glutamate oxidase, on the end of the probe that reacts with glutamate to create hydrogen peroxide. The carbon nanotubes enhance the conductivity of the hydrogen peroxide, and a computer can calculate the movement of glutamate relative to the cell surface.

The sensor oscillates and samples the concentration activities of glutamate at various positions relative to the neurons in culture. Those measurements at different distances can tell researchers whether the glutamate is flowing back toward the neurons or dissipating in many directions.

Current sensor technology allows for sensing in vitro, but those probes are large and invasive, Porterfield said, and they don't measure the movement of the chemicals.

McLamore said the sensor also is valuable because it is able to hone in on only glutamate using just one probe and custom software that filters out variations in the signals that are read, which removes signal noise due to other compounds.

"There are many compounds present near the neurons which can potentially create noise, but this sensor should be selective for one compound. We filter out all of the background noise," McLamore said. "It's the same thing modern hearing aids do. They're filtering out ambient noises, and that's the same thing you get when you oscillate a biosensor."

The sensor also could be adapted to measure other chemicals by changing the enzyme used on its tip.

Rickus said the sensor's versatility would be valuable for understanding the effects of therapies for epilepsy, Parkinson's disease, damage caused by chemotherapy, memory loss and many other conditions. The sensor will give valuable data on how damaged neurons function and how drugs or therapies affect those cells.

Porterfield said the next step is to make small improvements to the sensor and adapt it to use other enzymes. The Office of Naval Research funded the research.

####

For more information, please click here

Contacts:
Writer: Brian Wallheimer,
765-496-2050,

Sources: Marshall Porterfield,
765-494-1190,

Jenna Rickus, 765-494-1197,

Eric McLamore, 806-239-9556,

Ag Communications: (765) 494-8415;
Steve Leer,

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Entanglement on a chip: Breakthrough promises secure communications and faster computers January 27th, 2015

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Possible Futures

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Academic/Education

Rice's Naomi Halas to direct Smalley Institute: Optics pioneer will lead Rice's multidisciplinary science institute January 15th, 2015

SUNY Board Appoints Dr. Alain Kaloyeros as Founding President of SUNY Polytechnic Institute January 13th, 2015

CNSE's Smart System Technology & Commercialization Center Successfully Recertifies as ISO 9001:2008 January 12th, 2015

SUNY Poly Now Accepting Applications to the Colleges of Nanoscale Science and Engineering for Fall 2015: Full Scholarships Available to Incoming CNSE Students January 7th, 2015

Nanotubes/Buckyballs

Chromium-centered cycloparaphenylene rings for making functionalized nanocarbons January 26th, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

Carbon nanotube finding could lead to flexible electronics with longer battery life January 14th, 2015

Nanomedicine

Engineering self-assembling amyloid fibers January 26th, 2015

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

2nd International Conference on Infectious Diseases & Nanomedicine (December 15-18, 2015, Kathmandu, NEPAL) January 22nd, 2015

Sensors

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Iranian Scientists Produce Graphene-Based Oxygen Sensor January 23rd, 2015

Announcements

Entanglement on a chip: Breakthrough promises secure communications and faster computers January 27th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Nanobiotechnology

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

DNA 'glue' could someday be used to build tissues, organs January 14th, 2015

Photonic crystal nanolaser biosensor simplifies DNA detection: New device offers a simpler and potentially less expensive way to detect DNA and other biomolecules through changes in surface charge density or solution pH January 13th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE