Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > "Green Chips" for Tomorrow's Computers

Abstract:
JARA-FIT scientists achieve breakthrough in design of computer chips

"Green Chips" for Tomorrow's Computers

Aachen/Jülich | Posted on April 19th, 2010

An innovative concept from scientists of the Jülich-Aachen Research Alliance (JARA) will pave the way for designing chips for future computers. For the generation after next of computer chips this development means higher computing power with significantly lower energy requirements - an important step for "green computing".

A working group headed by Professor Rainer Waser from Forschungszentrum Jülich and RWTH Aachen University has developed a novel switching concept and the related technology for so-called memristor chips. With their research findings, the scientists are preparing for a paradigm shift in the architecture of computer chips. The article presenting these findings is being published today in the internationally respected journal Nature Materials with the title "Complementary resistive switches for passive nanocrossbar memories".

It has been known for few years that memristor chips may play an important part in alternative architectures for future computers. Memristive cells have the special property that their resistance can be programmed (resistor) and subsequently remains stored (memory). However, it has so far not been possible to avoid a superimposition of information between adjacent cells in structured arrays when data is written onto such a structure - due to so-called sneak paths of the electrical current - without each cell being connected to its own transistor. The additional design effort involved limits the cell density of present arrays and consequently also their performance. Furthermore, it makes chip production much more expensive.

The research group achieved a breakthrough with respect to the fundamental problem of crosstalk between adjacent memristive cells. A member of Waser's group from RWTH Aachen University, Eike Linn, and his colleagues Roland Rosezin and Carsten Kügeler, both from Forschungszentrum Jülich, solved this challenge by developing a completely new switching concept. This concept is based on the antiserial switching of two memristive cells. Together, these cells form a novel unit, which the scientists termed a CRS cell (complementary resistive switch). No undesirable superimposition of information takes place between CRS cells.

Apart from avoiding the sneak paths, the passive arrays - fixed arrays of the new CRS cells - provide the advantage of particularly energy-efficient operation since such chip architecture can locally combine computing and memory areas. A large proportion of the energy required by today's computers arises from the classical von Neumann architecture, in which memory and computing areas are strictly segregated. The necessary data transport between the functional areas thus leads to high energy consumption.

With respect to performance, simulations show that in the technology of the next but one generation (transistor gate length 22 nanometres) arrays of the size of up to 100 million bits can be constructed using CRS cell arrays. In comparison, similar structures in present-day computers have a size of just one thousand bits on the lowest level and require a transistor for each cell in order to avoid the sneak path problem.

Publication in Nature Materials: dx.doi.org/10.1038/NMAT2748

####

For more information, please click here

Contacts:
Prof. Dr.-Ing. Rainer Waser
Director at the Institute of Solid State Research, Forschungszentrum Jülich, Germany
Chair of Electronic Materials II, Aachen University of Technology (RWTH), Germany



Christian Schipke
Press officer
Jülich-Aachen Research Alliance (JARA)
Tel.: +49 2461 61 3835
Fax: +49 2461 61 1816
Mobile: +49 160 5322681

Copyright © Jülich-Aachen Research Alliance (JARA)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

The laser pulse that gets shorter all by itself: Ultrashort laser pulses have become an indispensable tool for atomic and molecular research; A new technology makes creating short infrared pulses easy and cheap January 27th, 2015

New pathway to valleytronics January 27th, 2015

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Academic/Education

Rice's Naomi Halas to direct Smalley Institute: Optics pioneer will lead Rice's multidisciplinary science institute January 15th, 2015

SUNY Board Appoints Dr. Alain Kaloyeros as Founding President of SUNY Polytechnic Institute January 13th, 2015

CNSE's Smart System Technology & Commercialization Center Successfully Recertifies as ISO 9001:2008 January 12th, 2015

SUNY Poly Now Accepting Applications to the Colleges of Nanoscale Science and Engineering for Fall 2015: Full Scholarships Available to Incoming CNSE Students January 7th, 2015

Chip Technology

Researchers Make Magnetic Graphene: UC Riverside research could lead to new multi-functional electronic devices January 27th, 2015

Nanometrics to Present at the Stifel 2015 Technology, Internet and Media Conference January 27th, 2015

New pathway to valleytronics January 27th, 2015

Entanglement on a chip: Breakthrough promises secure communications and faster computers January 27th, 2015

Memory Technology

Nano - "Green" metal oxides ... January 13th, 2015

Quantum optical hard drive breakthrough January 8th, 2015

Instant-start computers possible with new breakthrough December 19th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Nanoelectronics

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

Rice-sized laser, powered one electron at a time, bodes well for quantum computing January 15th, 2015

Rapid journey through a crystal lattice: Researchers measure how fast electrons move through single atomic layers January 14th, 2015

A new step towards using graphene in electronic applications January 14th, 2015

Announcements

Industrial Nanotech, Inc. Announces New OEM Customer January 27th, 2015

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

The laser pulse that gets shorter all by itself: Ultrashort laser pulses have become an indispensable tool for atomic and molecular research; A new technology makes creating short infrared pulses easy and cheap January 27th, 2015

New pathway to valleytronics January 27th, 2015

Environment

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Magnetic Nanosorbents Able to Eliminate Chemical Contaminants January 19th, 2015

Malaysian Nanotechnology Company Nanopac Innovation Ltd. lists on the NSX January 19th, 2015

Iran Designs Magnetic Nano-Absorbents Cleaning Chemical Pollutants January 11th, 2015

Energy

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Research partnerships

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

Wearable sensor clears path to long-term EKG, EMG monitoring January 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE