Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > "Green Chips" for Tomorrow's Computers

Abstract:
JARA-FIT scientists achieve breakthrough in design of computer chips

"Green Chips" for Tomorrow's Computers

Aachen/Jülich | Posted on April 19th, 2010

An innovative concept from scientists of the Jülich-Aachen Research Alliance (JARA) will pave the way for designing chips for future computers. For the generation after next of computer chips this development means higher computing power with significantly lower energy requirements - an important step for "green computing".

A working group headed by Professor Rainer Waser from Forschungszentrum Jülich and RWTH Aachen University has developed a novel switching concept and the related technology for so-called memristor chips. With their research findings, the scientists are preparing for a paradigm shift in the architecture of computer chips. The article presenting these findings is being published today in the internationally respected journal Nature Materials with the title "Complementary resistive switches for passive nanocrossbar memories".

It has been known for few years that memristor chips may play an important part in alternative architectures for future computers. Memristive cells have the special property that their resistance can be programmed (resistor) and subsequently remains stored (memory). However, it has so far not been possible to avoid a superimposition of information between adjacent cells in structured arrays when data is written onto such a structure - due to so-called sneak paths of the electrical current - without each cell being connected to its own transistor. The additional design effort involved limits the cell density of present arrays and consequently also their performance. Furthermore, it makes chip production much more expensive.

The research group achieved a breakthrough with respect to the fundamental problem of crosstalk between adjacent memristive cells. A member of Waser's group from RWTH Aachen University, Eike Linn, and his colleagues Roland Rosezin and Carsten Kügeler, both from Forschungszentrum Jülich, solved this challenge by developing a completely new switching concept. This concept is based on the antiserial switching of two memristive cells. Together, these cells form a novel unit, which the scientists termed a CRS cell (complementary resistive switch). No undesirable superimposition of information takes place between CRS cells.

Apart from avoiding the sneak paths, the passive arrays - fixed arrays of the new CRS cells - provide the advantage of particularly energy-efficient operation since such chip architecture can locally combine computing and memory areas. A large proportion of the energy required by today's computers arises from the classical von Neumann architecture, in which memory and computing areas are strictly segregated. The necessary data transport between the functional areas thus leads to high energy consumption.

With respect to performance, simulations show that in the technology of the next but one generation (transistor gate length 22 nanometres) arrays of the size of up to 100 million bits can be constructed using CRS cell arrays. In comparison, similar structures in present-day computers have a size of just one thousand bits on the lowest level and require a transistor for each cell in order to avoid the sneak path problem.

Publication in Nature Materials: dx.doi.org/10.1038/NMAT2748

####

For more information, please click here

Contacts:
Prof. Dr.-Ing. Rainer Waser
Director at the Institute of Solid State Research, Forschungszentrum Jülich, Germany
Chair of Electronic Materials II, Aachen University of Technology (RWTH), Germany



Christian Schipke
Press officer
Jülich-Aachen Research Alliance (JARA)
Tel.: +49 2461 61 3835
Fax: +49 2461 61 1816
Mobile: +49 160 5322681

Copyright © Jülich-Aachen Research Alliance (JARA)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Academic/Education

Graphene: Progress, not quantum leaps May 23rd, 2016

Smithsonian Science Education Center and National Space Society Team Up for Next-Generation Space Education Program "Enterprise In Space" May 11th, 2016

The University of Colorado Boulder, USA, combines Raman spectroscopy and nanoindentation for improved materials characterisation May 9th, 2016

Albertan Science Lab Opens in India May 7th, 2016

Chip Technology

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Dartmouth team creates new method to control quantum systems May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Physicists create first metamaterial with rewritable magnetic ordering May 23rd, 2016

Memory Technology

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Magnetic vortices defy temperature fluctuations: Common magnetic mineral is reliable witness to Earth's history April 19th, 2016

A single-atom magnet breaks new ground for future data storage April 15th, 2016

Ames Laboratory physicists discover new material that may speed computing April 12th, 2016

Nanoelectronics

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene May 20th, 2016

New type of graphene-based transistor will increase the clock speed of processors: Scientists have developed a new type of graphene-based transistor and using modeling they have demonstrated that it has ultralow power consumption compared with other similar transistor devices May 19th, 2016

Self-healing, flexible electronic material restores functions after many breaks May 17th, 2016

Announcements

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Environment

Novel functionalized nanomaterials for CO2 capture May 10th, 2016

First single-enzyme method to produce quantum dots revealed: Biological manufacturing process, pioneered by three Lehigh University engineers, produces equivalent quantum dots to those made chemically--but in a much greener, cheaper way May 9th, 2016

Los Alamos National Laboratory Expands Scope to Locus Technologies SaaS Contract: Los Alamos National Laboratory Adds Two New Applications to Locus SaaS Platform May 7th, 2016

Understanding tiny droplets can make for better weather forecasts: Climate change models also benefit from understanding fundamental thermodynamics of water droplets May 6th, 2016

Energy

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

This 'nanocavity' may improve ultrathin solar panels, video cameras and more May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

Research partnerships

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Mille-feuille-filter removes viruses from water May 19th, 2016

Carnegie Mellon develops bio-mimicry method for preparing and labeling stem cells: Method allows researchers to prepare mesenchymal stem cells and monitor them using MRI May 19th, 2016

The CEA Announces Expanded Collaboration with Intel to Advance Cutting-edge Research and Innovation in Key Digital Areas May 17th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic