Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Revolutionising industrial catalysts

The crystal structure of the nanoporous crystal showing the ‘molecular wall-tie’ ligands (green) binding between the iron centres
The crystal structure of the nanoporous crystal showing the ‘molecular wall-tie’ ligands (green) binding between the iron centres

Abstract:
Scientists are a step closer to being able to prepare porous solids that can mimic the sophisticated chemistry found in nature thanks to new research involving Cardiff University.

Revolutionising industrial catalysts

Wales | Posted on April 19th, 2010

Researchers from the University's School of Chemistry and the University of Manchester have succeeded in engineering crystals that are able to maintain their structure, providing a permanent porous matrix within which chemical reactions can take place. Their findings are published in the journal Science.

With this new porous crystal, made from an iron-containing compound called phthalocyanine, the group are looking to nature to maximise its potential within the field of industrial catalysts.

They are taking their initiative from enzymes - nature's catalysts that have a wide range of roles in biological environments, including speeding up chemical reactions within the human body. The research team are particularly interested in hemoproteins, a type of protein that is unusual in the diversity of tasks they are able to perform.

Lead author on the paper, Professor Neil McKeown, School of Chemistry, explains the significance of the group's achievement: "Normally the voids within nanoporous crystals of this type need to be filled with organic solvent and if this is removed they simply collapse losing their porosity and therefore the space in which to carry out chemical reactions. But by taking inspiration from the use of cavity wall-ties in architectural engineering, we have stabilised our crystals with the addition of suitable ligands, that can bind simultaneously to two iron atoms, thus acting as ‘molecular wall-ties."

The design of the new type of crystal is such that they can exist happily in water based environments and are accessible to gas molecules. This aspect makes them a contender for future industrial catalysts.

The group used the Science and Technology Facilities Council's Daresbury Laboratory and Diamond's Single Crystal Diffraction beamline I19 to understand whether it is possible to make porous crystals with the reactivity of hemoproteins in order to produce more effective man-made catalysts.

This research was funded by the Engineering and Physical Sciences Research Council (EPSRC). The full article ‘Heme-Like Coordination Chemistry Within Nanoporous Molecular Crystals' C. Grazia Bezzu, Madeleine Helliwell, John E. Warren, David R. Allan, Neil B. McKeown, is published in Science and available online here: www.sciencemag.org/cgi/content/abstract/327/5973/1627

####

About Cardiff University
Cardiff University is recognised in independent government assessments as one of Britain's leading teaching and research universities.

Founded by Royal Charter in 1883, the University today combines impressive modern facilities and a dynamic approach to teaching and research with its proud heritage of service and achievement.

For more information, please click here

Copyright © Cardiff University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

JPK Instruments announce partnership with Swiss company, Cytosurge AG. The partnership makes Cytosurge’s FluidFM® technology available on the JPK NanoWizard® AFM platform December 8th, 2017

Chemistry

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Copper will replace toxic palladium and expensive platinum in the synthesis of medications: The effectiveness of copper nanoparticles as a catalyst has been proven December 5th, 2017

Possible Futures

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Academic/Education

Luleå University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Announcements

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Industrial

Silicon Sense first to achieve EPA approval to import detonation nanodiamonds to US: Nanodiamond additives can significantly improve the performance of metal finishing, polymer thermal and mechanical compounds, polymer coatings, CMP polishing and a range of other applications November 29th, 2017

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Researchers greenlight gas detection at room temperature October 26th, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project