Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > The assembly of protein strands into fibrils

Abstract:
Researchers at ETH Zürich, EPF Lausanne and at the University of Fribourg have evidenced a basic general mechanism describing how filamentous proteins assemble into ribbon like structures, the so-called Amyloid fibrils. Combining experiments and theory, they could explain how denatured milk proteins assemble into ribbon like structures composed of up to five filaments. These findings are shining a surprisingly new light on the assembly of these proteins.

The assembly of protein strands into fibrils

Switzerland | Posted on April 19th, 2010

The Atomic Force Microscope depicts on its screen the few nanometer thick and few micrometer long fibers as white flexible sticks, crisscrossing the surface on which they are deposited. The very peculiar property of these proteins lies in fact that they can self assemble into complex ribbon-like twisted fibers.

Researchers at ETH Zürich, EPF Lausanne and University of Fribourg have teamed up to take Atomic Force Microscopy images of the fibers and to analyze them using concepts from polymer physics and theoretical modeling. This combination of expertise has lead them to propose a set of general rules governing the assembly of filaments into thicker and twisted ribbon like fibers. Their results are published in the current issue of the scientific journal Nature Nanotechnology. "The model that we propose is extremely precise in its predictions", says Raffaele Mezzenga, Professor of Food and Soft Materials Sciences at the ETH Zürich. "Up to now there was no such exact and general model for the formation of Amyloid fibers", continues Giovanni Dietler, Professor of Physics of Living Matter, at the EPF Lausanne.

The structure of the Amyloid fibers as it was unveiled by the experiments, surprised the researchers. Single proteins build the long filaments and subsequently the filaments assemble side by side to form the ribbon-like twisted fibers.

Mezzenga explains that the ribbon-like structure is the logic consequence of the strong charge carried by the building blocks of the fibers. In fact, the single proteins feel a strong mutual repulsion preventing them to pack and the ribbon structure is the only one that permits to limit this repulsion. Presently one missing information in the present model, is the exact nature of the short range attraction between the building blocks that drives in the first place the assembly among the protein filaments. Scientists agree that along the filaments there are charge-less domains of hydrophobic character (water repellant) that are the source of the short-range attraction. So there is a balance between attractive and repulsive interactions and the results is the ribbon like twisted conformation.

Self-organizing proteins are common in living matter and they are found in large aggregates for example in blood coagulation. Spherical like proteins are used in food industry as emulsifiers, gelling and foaming agents and in vitro they form Amyloid like structures. These latter fibers have properties (elasticity, solubility, etc) favorable for food texturing or to produce special structures. The milk protein beta-lactoglubulin studied by Mezzenga and his colleagues is at the beginning spherical and by a heat treatment accompanied by acid environment it aggregates into the filamentous structures. Beta-lactoglobulin is an important component of the milk serum and therefore very relevant for food industry.

The knowledge gained by the scientists on this food protein can potentially benefit medical sciences. In fact Amyloid-like fibers appear in humans affected by neurodegenerative diseases, like Alzheimer- or Creutzfeldt-Jakob disease. These human fibers, although made out of a very different proteins, are also ribbon-like and twisted and their assembly into long aggregates is presently under intense scrutiny. The model proposed by the team could also help to understand the genesis and development of theses diseases.

####

For more information, please click here

Copyright © Ecole Polytechnique Federale de Lausanne

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Immune system is key ally in cyberwar against cancer: Rice University study yields new two-step strategy for weakening cancer September 23rd, 2014

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Self Assembly

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Molecular self-assembly controls graphene-edge configuration September 10th, 2014

Rice chemist wins rare NSF Special Creativity Award: Grant extension will bolster Zubarev's effort to produce gold nanorods September 8th, 2014

Nanomedicine

Immune system is key ally in cyberwar against cancer: Rice University study yields new two-step strategy for weakening cancer September 23rd, 2014

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

Engineered proteins stick like glue — even in water: New adhesives based on mussel proteins could be useful for naval or medical applications September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Discoveries

Immune system is key ally in cyberwar against cancer: Rice University study yields new two-step strategy for weakening cancer September 23rd, 2014

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

Announcements

Immune system is key ally in cyberwar against cancer: Rice University study yields new two-step strategy for weakening cancer September 23rd, 2014

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Food/Agriculture/Supplements

Iranian Scientists Separate Zinc Ion at Low Concentrations September 20th, 2014

Nanoscience makes your wine better September 17th, 2014

Newly-Developed Nanosensor Controls Amount of Edible Dyes in Foodstuff Products September 5th, 2014

Iran Unveils 5 Home-Made Knowledge-Based Products August 25th, 2014

Nanobiotechnology

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

CiQUS researchers design an artificial nose to detect DNA differentiation with single nucleotide resolution September 18th, 2014

Research partnerships

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Carbon Sciences Developing Breakthrough Technology to Mass-Produce Graphene -- the New Miracle Material: Company Enters Into an Agreement With the University of California, Santa Barbara (UCSB) to Fund the Further Development of a New Graphene Process September 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE