Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Case Western Reserve team discovers 'smart' insulin molecule

Abstract:
Researchers invent zinc-stapled insulin to massively reduce insulin-related cancer risk

Case Western Reserve team discovers 'smart' insulin molecule

Cleveland, OH | Posted on April 18th, 2010

April 12, 2010 - For millions of Americans with Type-2 diabetes and inject insulin to control diabetes (with onset typically in adulthood) the associated risk of cancer is of increasing concern. Studies have demonstrated that obesity and excess insulin - whether naturally produced by the body or injected in synthetic form - are associated with an increased incidence of some common cancers.

With the release of today's study, "Supramolecular Protein Engineering - Design of Zinc-Stapled Insulin Hexamers as a Long Acting Depot," in the prestigious Journal of Biological Chemistry, a team of researchers from Case Western Reserve University School of Medicine, led by Michael Weiss, MD, PhD, Cowan-Blum Professor of Cancer Research and Chair of the Department of Biochemistry, reveals their invention of a "smart" insulin protein molecule that binds considerably less to cancer receptors and self-assembles under the skin. To provide a slow-release form of insulin, t he analog self-assembles under the skin by means of "stapling" itself via bridging zinc ions. In light of its scientific and societal importance, the publication was highlighted as a "Paper of the Week" by the editors of the journal.

"It's quite a novel mechanism. Our team has applied the perspective of biomedical engineering to the biochemistry of a therapeutic protein. We regard the injected insulin solution as forming a new biomaterial that can be engineered to optimize its nano-scale properties," says Dr. Weiss. He adds, "The notion of engineered zinc staples may find application to improve diverse injectable protein drugs to address a variety of conditions from cancer to immune deficiency."

While initially tested in diabetic rats by team member Faramarz Ismail-Beigi, PhD, professor of medicine at CWRU School of Medicine, the study of this new, self-assembling insulin will continue with approval by the National Institutes of Health toward the goal of human clinical trials.

"The goal of all drug therapies is to make therapeutic molecules more selective, in other words, more effective with less complications. We've sought to accomplish this with our engineering a new and "smarter" insulin molecule, as the hormone's primary job is to bind to the key receptors that regulate blood glucose concentration (designated the insulin receptor), not cancer-related receptors," says Dr. Weiss.

The new insulin analog exhibits reduced binding to a receptor that can drive cell growth, called the IGF receptor. Protein engineering spans both basic science and its translation to clinical care. Critical to reaching the translational goal of improved insulin therapy was an interdisciplinary team, including endocrinologist, Dr. Ismail-Beigi; biochemist, Nelson Phillips, PhD, associate professor of biochemistry; X-ray crystallographer, Zhu-li Wan, PhD, instructor in biochemistry; and receptor expert, Jonathan Whittaker, PhD, associate professor of biochemistry.

The study concludes and demonstrates, "…The potential of interfacial zinc-binding sites, introduced by design, to modify the pharmacokinetics of a protein in a subcutaneous depot. Such bottom-up control of assembly illustrates general principles of supramolecular chemistry and their application to nanobiotechnology.

"Zinc stapling of insulin exemplifies a general strategy to modify the pharmacokinetic and biological properties of a subcutaneous protein depot. The engineering of novel lattice contacts in protein crystals can thus enable control of supramolecular assembly as a therapeutic protein nanotechnology."

####

About Case Western Reserve University School of Medicine
Founded in 1843, Case Western Reserve University School of Medicine is the largest medical research institution in Ohio and is among the nation's top medical schools for research funding from the National Institutes of Health. The School of Medicine is recognized throughout the international medical community for outstanding achievements in teaching. The School's innovative and pioneering Western Reserve2 curriculum interweaves four themes--research and scholarship, clinical mastery, leadership, and civic professionalism--to prepare students for the practice of evidence-based medicine in the rapidly changing health care environment of the 21st century. Eleven Nobel Laureates have been affiliated with the school.

Annually, the School of Medicine trains more than 800 M.D. and M.D./Ph.D. students and ranks in the top 25 among U.S. research-oriented medical schools as designated by U.S. News &World Report "Guide to Graduate Education."

The School of Medicine's primary affiliate is University Hospitals Case Medical Center and is additionally affiliated with MetroHealth Medical Center, the Louis Stokes Cleveland Department of Veterans Affairs Medical Center, and the Cleveland Clinic, with which it established the Cleveland Clinic Lerner College of Medicine of Case Western Reserve University in 2002.

For more information, please click here

Contacts:
Christina DeAngelis

216-368-3635

Copyright © Eurekalert

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GLOBALFOUNDRIES to Expand Presence in China with 300mm Fab in Chongqing: Company plans new manufacturing facility and additional design capabilities to serve customers in China May 31st, 2016

Nanobiotix establishes promising preclinical proof-of-concept in Immuno Oncology May 31st, 2016

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Possible Futures

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Academic/Education

Graphene: Progress, not quantum leaps May 23rd, 2016

Smithsonian Science Education Center and National Space Society Team Up for Next-Generation Space Education Program "Enterprise In Space" May 11th, 2016

The University of Colorado Boulder, USA, combines Raman spectroscopy and nanoindentation for improved materials characterisation May 9th, 2016

Albertan Science Lab Opens in India May 7th, 2016

Self Assembly

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Searching for a nanotech self-organizing principle May 1st, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Brookhaven's Oleg Gang Named a Battelle 'Inventor of the Year': Recognized for work using DNA to guide and regulate the self-assembly of nanoparticles into clusters and arrays with controllable properties April 25th, 2016

Nanomedicine

Nanobiotix establishes promising preclinical proof-of-concept in Immuno Oncology May 31st, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Announcements

GLOBALFOUNDRIES to Expand Presence in China with 300mm Fab in Chongqing: Company plans new manufacturing facility and additional design capabilities to serve customers in China May 31st, 2016

Nanobiotix establishes promising preclinical proof-of-concept in Immuno Oncology May 31st, 2016

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Nanobiotechnology

Nanobiotix establishes promising preclinical proof-of-concept in Immuno Oncology May 31st, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic