Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Wake Forest earns patent for efficient, inexpensive fiber-based solar cells

David Carroll, associate professor of physics at Wake Forest University in Winston-Salem, N.C. is director of the school's Center for Nanotechnology and Molecular Materials, where recent research breakthroughs led to the formation of two start-up companies, FiberCell and PlexiLight, to commercialize new nanotechnologies.
David Carroll, associate professor of physics at Wake Forest University in Winston-Salem, N.C. is director of the school's Center for Nanotechnology and Molecular Materials, where recent research breakthroughs led to the formation of two start-up companies, FiberCell and PlexiLight, to commercialize new nanotechnologies.

Abstract:
Wake Forest University has received the first patent for a new solar cell technology that can double the energy production of today's flat cells at a fraction of the cost.

Wake Forest earns patent for efficient, inexpensive fiber-based solar cells

Winston-Salem, NC | Posted on April 17th, 2010

"It comes at a pretty high price to be green," said David Carroll, Ph.D., the director of Wake Forest's Center for Nanotechnology and Molecular Materials, where the fiber cell was developed. "This device can make a huge difference."

The university received the patent for fiber-based photovoltaic, or solar, cells from the European Patent Office; applications to the U.S. Patent Office are pending. The patent on the technology has been licensed to FiberCell Inc., based in the Piedmont Triad Research Park of Winston-Salem, to develop a way to manufacture the cells. The company is producing its first large test cells.

These new solar cells are made from millions of miniscule plastic fibers that can collect sunlight at oblique angles ­even when the sun is rising and setting. Flat-cell technology captures light primarily when the sun is directly above.

Where a flat cell loses energy when the sun's rays bounce off its shiny surface, the fiber-based design creates more surface area to confine the sun's rays, trapping the light in the tiny fiber "cans" where it bounces around until it is absorbed almost completely. That means much greater energy production with fiber-based cells: Wake Forest's fiber cells could produce about twice as many kilowatt hours per day as standard flat cells.

"We've been able to show that with a standard absorber we can collect more of the photons than anyone else can," Carroll said. "Because of the way the device works, I get more power."

To make the cells, the plastic fibers are assembled onto plastic sheets, with a technology similar to that used to create the tops of soft-drink cups. The absorber ­either a polymer or a dye ­ is sprayed on. The plastic makes the cells lightweight and flexible ­a manufacturer could roll them up and ship them anywhere cheaply.

Carroll envisions several key uses for fiber cells:

•Green building: "We've known how to build the ‘smart house,' it's just been too expensive," he said. "The fiber cell can change that." Alter the dimensions and dye color, and builders can integrate the cells nearly anywhere in the home's design. Because fiber cells can collect light at various angles, they no longer have to stay on the roof to work. Partner the cells with devices that could store the power more efficiently, turn off lights and appliances when not in use, and capture and redirect the heat the building radiates at night, and you have a more affordable, energy-efficient structure.

•Bringing power to developing countries: Once the primary manufacturer ships the lightweight, plastic fiber cells, satellite plants in poor countries can spray them with the dye and prepare them for installation. Carroll estimates it would cost about $5 million to set up a finishing plant ­about $15 million less than it could cost to set up a similar plant for flat cells.

•Revolutionizing the power grid: "What if you didn't own your roof," Carroll asked. "What if the power company did?" The fiber cells installed on some homes in each neighborhood would feed the grid, and the power company would monitor energy collection and distribution through a computer network. The homeowner would not maintain the cells; that responsibility would fall to the power company.

####

About Wake Forest University
Wake Forest University’s Center for Nanotechnology and Molecular Materials uses revolutionary science to address the pressing needs of human society, from health care to green technologies. It is a shared resource serving academic, industrial and governmental researchers across the region.

For more information, please click here

Contacts:
Press Contacts:
Cheryl Walker
(336) 758-5237


Ellen Sterner Sedeno
(214) 546-8893

Copyright © Wake Forest University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Measuring the Smallest Magnets July 28th, 2014

WITec to host the 11th Confocal Raman Imaging Symposium from September 29th - October 1st in Ulm, Germany July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Possible Futures

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

Academic/Education

Haydale Announces Collaboration Agreement with Swansea University’s Welsh Centre for Printing and Coatings (WCPC) July 12th, 2014

STFC takes delivery of the 100th Hitachi Tabletop SEM in the UK July 3rd, 2014

Innovation Management and the Emergence of the Nanobiotechnology Industry July 1st, 2014

Albany NanoCollege Faculty Member Selected as Editor-in-Chief of the Prestigious Journal of Electronic Materials July 1st, 2014

Announcements

Measuring the Smallest Magnets July 28th, 2014

WITec to host the 11th Confocal Raman Imaging Symposium from September 29th - October 1st in Ulm, Germany July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Patents/IP/Tech Transfer/Licensing

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

Rice's silicon oxide memories catch manufacturers' eye: Use of porous silicon oxide reduces forming voltage, improves manufacturability July 10th, 2014

Energy

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2014 conference July 8th, 2014

Solar/Photovoltaic

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

Making dreams come true: Making graphene from plastic? July 2nd, 2014

Shrinky Dinks close the gap for nanowires July 1st, 2014

New Study Raises Possibility of Production of P-Type Solar Cells July 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE