Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Wake Forest earns patent for efficient, inexpensive fiber-based solar cells

David Carroll, associate professor of physics at Wake Forest University in Winston-Salem, N.C. is director of the school's Center for Nanotechnology and Molecular Materials, where recent research breakthroughs led to the formation of two start-up companies, FiberCell and PlexiLight, to commercialize new nanotechnologies.
David Carroll, associate professor of physics at Wake Forest University in Winston-Salem, N.C. is director of the school's Center for Nanotechnology and Molecular Materials, where recent research breakthroughs led to the formation of two start-up companies, FiberCell and PlexiLight, to commercialize new nanotechnologies.

Abstract:
Wake Forest University has received the first patent for a new solar cell technology that can double the energy production of today's flat cells at a fraction of the cost.

Wake Forest earns patent for efficient, inexpensive fiber-based solar cells

Winston-Salem, NC | Posted on April 17th, 2010

"It comes at a pretty high price to be green," said David Carroll, Ph.D., the director of Wake Forest's Center for Nanotechnology and Molecular Materials, where the fiber cell was developed. "This device can make a huge difference."

The university received the patent for fiber-based photovoltaic, or solar, cells from the European Patent Office; applications to the U.S. Patent Office are pending. The patent on the technology has been licensed to FiberCell Inc., based in the Piedmont Triad Research Park of Winston-Salem, to develop a way to manufacture the cells. The company is producing its first large test cells.

These new solar cells are made from millions of miniscule plastic fibers that can collect sunlight at oblique angles ­even when the sun is rising and setting. Flat-cell technology captures light primarily when the sun is directly above.

Where a flat cell loses energy when the sun's rays bounce off its shiny surface, the fiber-based design creates more surface area to confine the sun's rays, trapping the light in the tiny fiber "cans" where it bounces around until it is absorbed almost completely. That means much greater energy production with fiber-based cells: Wake Forest's fiber cells could produce about twice as many kilowatt hours per day as standard flat cells.

"We've been able to show that with a standard absorber we can collect more of the photons than anyone else can," Carroll said. "Because of the way the device works, I get more power."

To make the cells, the plastic fibers are assembled onto plastic sheets, with a technology similar to that used to create the tops of soft-drink cups. The absorber ­either a polymer or a dye ­ is sprayed on. The plastic makes the cells lightweight and flexible ­a manufacturer could roll them up and ship them anywhere cheaply.

Carroll envisions several key uses for fiber cells:

•Green building: "We've known how to build the ‘smart house,' it's just been too expensive," he said. "The fiber cell can change that." Alter the dimensions and dye color, and builders can integrate the cells nearly anywhere in the home's design. Because fiber cells can collect light at various angles, they no longer have to stay on the roof to work. Partner the cells with devices that could store the power more efficiently, turn off lights and appliances when not in use, and capture and redirect the heat the building radiates at night, and you have a more affordable, energy-efficient structure.

•Bringing power to developing countries: Once the primary manufacturer ships the lightweight, plastic fiber cells, satellite plants in poor countries can spray them with the dye and prepare them for installation. Carroll estimates it would cost about $5 million to set up a finishing plant ­about $15 million less than it could cost to set up a similar plant for flat cells.

•Revolutionizing the power grid: "What if you didn't own your roof," Carroll asked. "What if the power company did?" The fiber cells installed on some homes in each neighborhood would feed the grid, and the power company would monitor energy collection and distribution through a computer network. The homeowner would not maintain the cells; that responsibility would fall to the power company.

####

About Wake Forest University
Wake Forest University’s Center for Nanotechnology and Molecular Materials uses revolutionary science to address the pressing needs of human society, from health care to green technologies. It is a shared resource serving academic, industrial and governmental researchers across the region.

For more information, please click here

Contacts:
Press Contacts:
Cheryl Walker
(336) 758-5237


Ellen Sterner Sedeno
(214) 546-8893

Copyright © Wake Forest University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Possible Futures

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Academic/Education

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

COD Grad Begins Postdoctoral Fellow at Harvard University: Marsela Jorgolli's Passion for Physics Has Led to a Decade of Academic Research That Continues at Harvard University as a Postdoctoral Fellow February 2nd, 2016

Heriot-Watt's Institute of Photonics & Quantum Sciences uses the Deben Microtest 2 kN tensile stage to characterise ceramics and engineering plastics January 21st, 2016

Multiple uses for the JPK NanoWizard AFM system in the Smart Interfaces in Environmental Nanotechnology Group at the University of Illinois at Urbana-Champaign January 20th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Patents/IP/Tech Transfer/Licensing

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Joint Efforts by Iranian, Malaysian Scientists Produce Antibacterial Coatings for Isolated Areas February 4th, 2016

Silicon-based metamaterials could bring photonic circuits February 1st, 2016

Therapeutic Solutions International Licenses Dexosome Clinical Stage Cancer Immunotherapy Product From Gustave Roussy European Cancer Centre: FDA Cleared Immuno-Oncology Technology to Resume Clinical Development for Solid Tumor Patients January 27th, 2016

Energy

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Solar/Photovoltaic

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

Simplifying solar cells with a new mix of materials: Berkeley Lab-led research team creates a high-efficiency device in 7 steps January 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic