Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Palos Physician's Research Advances New Therapy in Cartilage Repair

Dr. Nirav A. Shah, MD
Dr. Nirav A. Shah, MD

Abstract:
Dr. Nirav A. Shah, MD, an orthopaedic sports medicine surgeon affiliated with Palos Community Hospital is the first to design a new nanotechnology biomedical therapy that promotes the growth of new, stronger cartilage to aid in the treatment of joint injuries.

Palos Physician's Research Advances New Therapy in Cartilage Repair

Palos Heights, IL | Posted on April 16th, 2010

"In conjunction with current minimally invasive surgical techniques, we have discovered that we can accelerate and enhance cartilage repair by using a synthetically developed biomaterial which is composed of the amino acids that normally exist in humans," says Dr. Shah. "Translating this to a clinical solution may mean quicker return to athletic activities and work, and possibly prevent injuries from progressing to further cartilage degeneration or end-stage arthritis."

Cartilage damage is typically associated with work and athletic injuries, and commonly occurs in conjunction with ACL tears and other ligament problems. Damaged cartilage can lead to joint pain, swelling, stiffness and loss of mobility, and eventually to osteoarthritis, a condition that currently affects 27 million people in the United States. With an aging and increasingly active population, that figure is expected to grow.

Unlike bone, cartilage does not grow back, so treatments to regenerate the tissue are critical. Current cartilage repair techniques oftentimes lead to Type I collagen, which resembles scar tissue, Dr. Shah explains. However, normal cartilage is composed of Type II collagen. The self-assembling peptide molecules used by Dr. Shah and his colleagues are able to more closely mimic the nano-structure of natural cartilage.

Dr. Shah's research at Northwestern University focused on cartilage damage to the knee, but other joints - including the shoulder, elbow, hip and ankle - could potentially benefit from the new therapy. "While still in pre-clinical trials, we are hopeful we could use this as an adjunct to current minimally invasive surgical techniques to improve and accelerate cartilage repair and regeneration," Dr. Shah says. "In the long run, we hope this also will slow and possibly decrease the incidence of arthritis after these types of injuries."

Dr. Shah anticipates that clinical trials may begin in as little as five years. In the meantime, he recommends that patients and primary care physicians have a low threshold for seeking out the expertise of an orthopaedic sports medicine specialist if there is concern for a cartilage injury.

"It's important for patients to present early on to an orthopaedic sports medicine physician with acute knee or other joint injuries so proper treatment, whether surgical or non-surgical, can begin immediately to maximize recovery and achieve the best possible outcomes," says Dr. Shah. "While these biological advancements are exciting, if safe and expedient intervention is not performed, future or early surgical treatments may not be as effective."

Dr. Shah and his colleagues' findings were reported by the Proceedings of the National Academy of Science on February 1, and are also published in the April 7, issue of the Journal of the American Medical Association. This significant contribution to orthopaedics also was awarded first place at the 2008 Orthopaedic Research & Education Foundation (OREF) Midwest Resident Research Symposium. OREF is the research and education arm of the American Orthopaedic Association, the American Association of Orthopaedic Surgeons, and the Orthopaedic Research Society.

Born and raised in the suburbs of Chicago, Dr. Shah is an orthopaedic surgeon with a sub-specialty in sports medicine. He completed his residency at McGaw Medical Center at Northwestern University, Chicago, and received his medical degree from the University of Illinois College of Medicine. He completed his subspecialty training in sports medicine and arthroscopic surgery in Houston, TX, at Methodist Hospital and Baylor College of Medicine where he worked with high school, collegiate and professional teams. Dr. Shah is affiliated with Palos Community Hospital in Palos Heights, IL.

A leading provider of orthopaedic care, Palos Community Hospital unites orthopaedic surgical excellence with exceptional nursing care and comprehensive physical therapy to provide a multi-disciplinary approach that quickly and safely returns patients to an optimal level of functionality. This, combined with Palos Home Health Care services and the professional staff and state-of-the-art facilities of the Palos Health & Fitness Center, makes orthopaedic care at Palos Community Hospital one of the most comprehensive in the Chicago area.

####

About Palos Community Hospital
Palos Community Hospital is a 436-bed non-profit health care facility located in Palos Heights, IL. As one of the leading area hospitals, Palos has been serving the communities of Chicago's southwest suburbs for nearly 40 years. Its 530-affiliate physicians represent more than 40 specialties and subspecialties. Palos Community Hospital is operated in accordance with the Ethical and Religious Directives for Catholic Healthcare Facilities.

For more information, please click here

Contacts:
(708) 923-4000
12251 S. 80th Avenue
Palos Heights, IL 60463

Copyright © Palos Community Hospital

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Possible Futures

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Self Assembly

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Engineered polymer membranes could be new option for water treatment May 6th, 2018

Watching nanomaterials form in 4D: Novel technology allows researchers to see dynamic reactions as they happen at the nanoscale April 26th, 2018

Tiny nanomachine successfully completes test drive: Researchers at the University of Bonn and the research institute Caesar build a one-wheeled vehicle out of DNA rings April 11th, 2018

Nanomedicine

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Graphene carpets: So neurons communicate better: Research by SISSA reveals that graphene can strengthen neuronal activity, confirming the unique properties of this nanomaterial. The study has been published on Nature Nanotechnology June 13th, 2018

New optical sensor can determine if molecules are left or right 'handed' June 13th, 2018

A nanotech sensor that turns molecular fingerprints into bar codes June 7th, 2018

Announcements

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Sports

Graphene-based desiccant offers super dry solution to moisture control June 1st, 2018

Synthetic “Melanin” Could Act as a Natural Sunscreen: The pigmentlike nanoparticles could protect cells from the sun’s damaging rays July 1st, 2017

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Applied Graphene Materials plc - Significant commercial progress in AGM’s three core sectors March 3rd, 2017

Nanobiotechnology

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Graphene carpets: So neurons communicate better: Research by SISSA reveals that graphene can strengthen neuronal activity, confirming the unique properties of this nanomaterial. The study has been published on Nature Nanotechnology June 13th, 2018

New optical sensor can determine if molecules are left or right 'handed' June 13th, 2018

Promising news from biomedicine: DNA origami more resilient than previously understood June 4th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project