Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Palos Physician's Research Advances New Therapy in Cartilage Repair

Dr. Nirav A. Shah, MD
Dr. Nirav A. Shah, MD

Abstract:
Dr. Nirav A. Shah, MD, an orthopaedic sports medicine surgeon affiliated with Palos Community Hospital is the first to design a new nanotechnology biomedical therapy that promotes the growth of new, stronger cartilage to aid in the treatment of joint injuries.

Palos Physician's Research Advances New Therapy in Cartilage Repair

Palos Heights, IL | Posted on April 16th, 2010

"In conjunction with current minimally invasive surgical techniques, we have discovered that we can accelerate and enhance cartilage repair by using a synthetically developed biomaterial which is composed of the amino acids that normally exist in humans," says Dr. Shah. "Translating this to a clinical solution may mean quicker return to athletic activities and work, and possibly prevent injuries from progressing to further cartilage degeneration or end-stage arthritis."

Cartilage damage is typically associated with work and athletic injuries, and commonly occurs in conjunction with ACL tears and other ligament problems. Damaged cartilage can lead to joint pain, swelling, stiffness and loss of mobility, and eventually to osteoarthritis, a condition that currently affects 27 million people in the United States. With an aging and increasingly active population, that figure is expected to grow.

Unlike bone, cartilage does not grow back, so treatments to regenerate the tissue are critical. Current cartilage repair techniques oftentimes lead to Type I collagen, which resembles scar tissue, Dr. Shah explains. However, normal cartilage is composed of Type II collagen. The self-assembling peptide molecules used by Dr. Shah and his colleagues are able to more closely mimic the nano-structure of natural cartilage.

Dr. Shah's research at Northwestern University focused on cartilage damage to the knee, but other joints - including the shoulder, elbow, hip and ankle - could potentially benefit from the new therapy. "While still in pre-clinical trials, we are hopeful we could use this as an adjunct to current minimally invasive surgical techniques to improve and accelerate cartilage repair and regeneration," Dr. Shah says. "In the long run, we hope this also will slow and possibly decrease the incidence of arthritis after these types of injuries."

Dr. Shah anticipates that clinical trials may begin in as little as five years. In the meantime, he recommends that patients and primary care physicians have a low threshold for seeking out the expertise of an orthopaedic sports medicine specialist if there is concern for a cartilage injury.

"It's important for patients to present early on to an orthopaedic sports medicine physician with acute knee or other joint injuries so proper treatment, whether surgical or non-surgical, can begin immediately to maximize recovery and achieve the best possible outcomes," says Dr. Shah. "While these biological advancements are exciting, if safe and expedient intervention is not performed, future or early surgical treatments may not be as effective."

Dr. Shah and his colleagues' findings were reported by the Proceedings of the National Academy of Science on February 1, and are also published in the April 7, issue of the Journal of the American Medical Association. This significant contribution to orthopaedics also was awarded first place at the 2008 Orthopaedic Research & Education Foundation (OREF) Midwest Resident Research Symposium. OREF is the research and education arm of the American Orthopaedic Association, the American Association of Orthopaedic Surgeons, and the Orthopaedic Research Society.

Born and raised in the suburbs of Chicago, Dr. Shah is an orthopaedic surgeon with a sub-specialty in sports medicine. He completed his residency at McGaw Medical Center at Northwestern University, Chicago, and received his medical degree from the University of Illinois College of Medicine. He completed his subspecialty training in sports medicine and arthroscopic surgery in Houston, TX, at Methodist Hospital and Baylor College of Medicine where he worked with high school, collegiate and professional teams. Dr. Shah is affiliated with Palos Community Hospital in Palos Heights, IL.

A leading provider of orthopaedic care, Palos Community Hospital unites orthopaedic surgical excellence with exceptional nursing care and comprehensive physical therapy to provide a multi-disciplinary approach that quickly and safely returns patients to an optimal level of functionality. This, combined with Palos Home Health Care services and the professional staff and state-of-the-art facilities of the Palos Health & Fitness Center, makes orthopaedic care at Palos Community Hospital one of the most comprehensive in the Chicago area.

####

About Palos Community Hospital
Palos Community Hospital is a 436-bed non-profit health care facility located in Palos Heights, IL. As one of the leading area hospitals, Palos has been serving the communities of Chicago's southwest suburbs for nearly 40 years. Its 530-affiliate physicians represent more than 40 specialties and subspecialties. Palos Community Hospital is operated in accordance with the Ethical and Religious Directives for Catholic Healthcare Facilities.

For more information, please click here

Contacts:
(708) 923-4000
12251 S. 80th Avenue
Palos Heights, IL 60463

Copyright © Palos Community Hospital

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Self Assembly

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

‘Designer’ nanodevice could improve treatment options for cancer sufferers October 22nd, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Nanomedicine

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

'Electronic skin' could improve early breast cancer detection October 29th, 2014

Announcements

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Sports

‘Small’ transformation yields big changes September 16th, 2014

CEA-Leti and CORIMA Team up on Force Sensors Integrated in Cycle Wheels to Measure Rider Power Output June 26th, 2014

‘Four!' Heads Up, Wide Use of More Flexible Metallic Glass Coming Your Way: Advances in Glass Alloys Lead to Strength, Flexibility March 4th, 2014

ASTM International Nanotechnology Committee Approves Airborne Nanoparticle Measurement Standard December 10th, 2013

Nanobiotechnology

Tiny carbon nanotube pores make big impact October 29th, 2014

Molecular beacons shine light on how cells 'crawl' October 27th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE