Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Research by Physics Professor David Broido published in Science

A one-atom thick sheet of graphene (highlighted in the circular window) on top of a silicon dioxide support proves to be an excellent thermal conductor, according to new research published in the journal Science. Although the interaction with the silicon dioxide suppressed the thermal 
conductivity of graphene compared to its freestanding form, supported graphene still demonstrated much higher heat conducting capability than silicon and copper nanostructures. This finding combined with graphene's superior strength and electron mobility make it a promising candidate for use in next-generation 
nano-electronic devices.
A one-atom thick sheet of graphene (highlighted in the circular window) on top of a silicon dioxide support proves to be an excellent thermal conductor, according to new research published in the journal Science. Although the interaction with the silicon dioxide suppressed the thermal conductivity of graphene compared to its freestanding form, supported graphene still demonstrated much higher heat conducting capability than silicon and copper nanostructures. This finding combined with graphene's superior strength and electron mobility make it a promising candidate for use in next-generation nano-electronic devices.

Abstract:
Theoretician works with team to prove supported graphene a superior thermal conductor

By Ed Hayward, Associate Director in the Office of News & Public Affairs

Research by Physics Professor David Broido published in Science

Chestnut Hill, MA | Posted on April 13th, 2010

The single-atom thick material graphene maintains its high thermal conductivity when supported by a substrate, a critical step in advancing the material from a laboratory phenomenon to a useful component in a range of nano-electronic devices, researchers report in the April 9 issue of the journal Science.

The team of engineers and theoretical physicists from the University of Texas at Austin, Boston College, and France's Commission for Atomic Energy report the super-thin sheet of carbon atoms - taken from the three-dimensional material graphite - can transfer heat more than twice as efficiently as copper thin films and more than 50 times better than thin films of silicon.

Since its discovery in 2004, graphene has been viewed as a promising new electronic material because it offers superior electron mobility, mechanical strength and thermal conductivity. These characteristics are crucial as electronic devices become smaller and smaller, presenting engineers with a fundamental problem of keeping the devices cool enough to operate efficiently.

The research advances the understanding of graphene as a promising candidate to draw heat away from "hot spots" that form in the tight knit spaces of devices built at the micro and nano scales. From a theoretical standpoint, the team also developed a new view of how heat flows in graphene. When suspended, graphene has extremely high thermal conductivity of 3,000 to 5,000 watts per meter per Kelvin. But for practical applications, the chicken-wire like graphene lattice would be attached to a substrate. The team found supported graphene still has thermal conductivity as high as 600 watts per meter per Kelvin near room temperature. That far exceeds the thermal conductivities of copper, approximately 250 watts, and silicon, only 10 watts, thin films currently used in electronic devices.

The loss in heat transfer is the result of graphene's interaction with the substrate, which interferes with the vibrational waves of graphene atoms as they bump against the adjacent substrate, according to co-author David Broido, a Boston College Professor of Physics.

The conclusion was drawn with the help of earlier theoretical models about heat transfer within suspended graphene, Broido said. Working with former BC graduate student Lucas Lindsay, now an instructor at Christopher Newport University, and Natalio Mingo of France's Commission for Atomic Energy, Broido re-examined the theoretical model devised to explain the performance of suspended graphene.

"As theorists, we're much more detached from the device or the engineering side. We're more focused on the fundamentals that explain how energy flows through a sheet graphene. We took our existing model for suspended graphene and expanded the theoretical model to describe this interaction that takes place between graphene and the substrate and the influence on the movement of heat through the material and, ultimately, it's thermal conductivity."

In addition to its superior strength, electron mobility and thermal conductivity, graphene is compatible with thin film silicon transistor devices, a crucial characteristic if the material is to be used in low-cost, mass production. Graphene nano-electronic devices have the potential to consume less energy, run cooler and more reliably, and operate faster than the current generation of silicon and copper devices.

Broido, Lindsay and Mingo were part of a research team led by Li Shi, a mechanical engineering professor at the University of Texas at Austin, which also included his UT colleagues Jae Hun Seol, Insun Jo, Arden Moore, Zachary Aitken, Michael Petttes, Xueson Li, Zhen Yao, Rui Huang, and Rodney Ruoff.

The research was supported by the Thermal Transport Processes Program and the Mechanics of Materials Program of the National Science Foundation, the U.S. Office of Naval Research, and the U.S. Department of Energy Office of Science.

####

For more information, please click here

Contacts:
Ed Hayward
Associate Director in the Office of News & Public Affairs,

Copyright © Boston College

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Harris & Harris Group to Host Conference Call on Second-Quarter 2014 Financial Results on August 15, 2014 July 23rd, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Govt.-Legislation/Regulation/Funding/Policy

NNCO Announces an Interactive Webinar: Progress Review on the Coordinated Implementation of the National Nanotechnology Initiative 2011 Environmental, Health, and Safety Research Strategy July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Possible Futures

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

Academic/Education

Haydale Announces Collaboration Agreement with Swansea University’s Welsh Centre for Printing and Coatings (WCPC) July 12th, 2014

STFC takes delivery of the 100th Hitachi Tabletop SEM in the UK July 3rd, 2014

Innovation Management and the Emergence of the Nanobiotechnology Industry July 1st, 2014

Albany NanoCollege Faculty Member Selected as Editor-in-Chief of the Prestigious Journal of Electronic Materials July 1st, 2014

Nanotubes/Buckyballs

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

University of Houston researchers create new method to draw molecules from live cells: Technique using magnetic nanomaterials offers promise for diagnosis, gene therapy July 17th, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Researchers discover boron 'buckyball' July 14th, 2014

Nanoelectronics

A Crystal Wedding in the Nanocosmos July 23rd, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Carbodeon enables 20 percent increase in polymer thermal filler conductivity with 0.03 wt.% nanodiamond additive at a lower cost than with traditional fillers: Improved materials and processes enable nanodiamond cost reductions of up to 70 percent for electronics and LED app July 9th, 2014

Announcements

Harris & Harris Group to Host Conference Call on Second-Quarter 2014 Financial Results on August 15, 2014 July 23rd, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Research partnerships

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE