Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Quantum spin-liquid simulated

The simulation of the quantum spin-liquid was performed on a flat honeycomb structure, where the electrons show a dynamical phase lacking any order.
The simulation of the quantum spin-liquid was performed on a flat honeycomb structure, where the electrons show a dynamical phase lacking any order.

Abstract:
A starting point for superconductivity?

Quantum spin-liquid simulated

Germany | Posted on April 13th, 2010

An exotic state of matter that physicists call a "quantum spin-liquid" can be realized by electrons in a honeycomb crystal structure. This is shown by scientists from the Universities of Stuttgart and Würzburg, Germany in the Nature magazine.

Electrons inside a crystal exist in different states. In many cases it is the crystal structure that decides, if the material is a metal with a finite electric conductivity, or if it is an insulator, which does not carry an electric current. But there also exist insulating materials, whose crystal structures suggest that they should behave like metals. Such materials are called "Mott insulators", and it is the repulsion between the electrons, that suppresses a metallic behaviour, such that the electrons are locked to the atoms.

Such localized electrons tend to order upon lowering the temperature, such as for example in magnetic structures. A "quantum spin-liquid" however is a non-magnetic Mott-insulator that is stabilized purely by quantum mechanical effects. The electrons inside a quantum spin-liquid resist to order down to the lowest temperatures, way down to the absolute zero of temperature at minus 273 degrees Celsius. The tendency to order is suppressed by dynamical fluctuations of the electrons even at zero absolute temperature (quantum fluctuations). For this to happen, the quantum fluctuations must be sufficiently large, which is rarely the case in nature, and also hard to realize in realistic models.

Now theorists from Stuttgart University, Zi Yang Meng, Priv.-Doz. Stefan Wessel, and Prof. Alejandro Muramatsu, together with their colleges Thomas Lang and Prof. Fakher Assaad from Würzburg University, showed that such a quantum spin-liquid exists in a realistic model of interacting electrons. For their study, they used large-scale computer simulations, in order to account for both the interactions between the electrons and their quantum fluctuations. Their unexpected findings were thus accepted for publication in the Nature magazine.

The quantum spin-liquid found by Meng et al. occurs in materials where the atoms form a two-dimensional, periodic array of hexagons, thus realizing a honeycomb lattice. Such a crystal structre is found for example in Graphene, a two-dimensional carbon allotrope, that was only recently synthesized, and has since then been the focus of intensive research. If the electronic interactions could be enhanced in such a material, then the highly interesting quantum spin-liquid state could be realized. It appears unlikly that this can be achieved, for example by expansion, in Graphene. Thus, the physicists from Stuttgart and Würzburg suggest exploring honeycomb-like structures formed from other group IV elements that show enhanced electronic interactions. A first step in this direction might already have been taken, since previously chemist succeeded in synthesizing Graphene-like structures of silicon atoms.

Furthermore, the quantum spin-liquid should also be realizable using ultra-cold atoms. In fact, the mathematical model studied by the physicists describes both interacting electrons in solid state systems as well as interacting ultra-cold atoms in an optical lattice. The impressive progress that has been achieved in this research field opens up the possibility to realize the quantum spin-liquid with ultra-cold atoms.

Another fascinating aspect of the quantum spin-liquid is that it can also be viewed as a starting point for superconductivity. Electric currents would then flow without resistance through the material. This has potential for many applications, such as ultra fast computers or the dissipation free transport of electricity.

In their fundamental research, the two theory groups in Stuttgart and Würzburg analyse complex phases of strongly interacting quantum many-body systems in general. They discovered the quantum spin-liquid phase, while studying possible transitions between metallic and insulating phases in a model for Graphene. In the vicinity of such transitions, the quantum fluctuations become significantly enhanced, and destroy any magnetic order. The scientists could also exclude other types of electronic orders from an extensive analysis. Such a study was only possible with the help of modern supercomputers. In particular, for their calculations, the theorists could profit from the highly efficient supercomputer centers in Jülich, München and Stuttgart. For the future, they hope to apply simulations of strongly interacting electrons also to the design of novel materials that realize exotic states of matter - including the quantum spin-liquid.

The research described above is embedded within the general research activities of the two universities. At the University of Stuttgart, the DFG research unit SFB/TRR 21, "Controll of Quantum Correlations in Tailored Matter", focuses on the realization of tailored quantum systems. Its spokesperson is Prof. Tilmann Pfau from the University of Stuttgart. At the University of Würzburg, a recently established research group "Electron Correlation-Induced Phenomena in Surfaces and Interfaces with Tuneable Interactions" complex electronic states are of central focus. Its spokesperson is Prof. Ralph Claessen from Würzburg University.

Reference
Quantum spin-liquid emerging in two-dimensional correlated Dirac fermions, Zi Yang Meng, Thomas C. Lang, Stefan Wessel, Fakher F. Assaad, and Alejandro Muramatsu, Nature, DOI:10.1038/nature08942

####

For more information, please click here

Contacts:
PD Dr. Stefan Wessel and Prof. Dr. Alejandro Muramatsu
Institut für Theoretische Physik III, Universität Stuttgart
Phone 0049.711/685-65206/65204

Prof. Dr. Fakher Assaad
Institut für Theoretische Physik der Universität Würzburg
Phone 0049.931/31-83652

Copyright © Universität Stuttgart

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

PETA science consortium to present hazard testing strategy at nanotoxicology meeting: High tech field ripe for use of sophisticated non-animal testing strategies April 22nd, 2014

Harris & Harris Group Notes the Receipt of Proceeds From the Sale of Molecular Imprints' Semiconductor Business to Canon April 22nd, 2014

National Space Society Congratulates SpaceX on the Success of CRS-3 and the First Flight of the Falcon 9R April 22nd, 2014

Possible Futures

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

The "Tipping Point" February 12th, 2014

Academic/Education

Global leader in solar cell manufacturing eyes New York for major expansion outside of Japan: CNSE and Solar Frontier Explore $700 Million Investment, Job Creation in New York State April 22nd, 2014

University of Waterloo Visits China to Strengthen Bonds With Research Partners April 21st, 2014

Director Wally Pfister joins UC Berkeley neuroengineers to discuss the science behind ‘Transcendence’ April 7th, 2014

First annual science week highlights STEM pipeline and partnerships: UB, SUNY Buffalo State and ECC team up with the City of Buffalo and its schools for April 7-11 events April 3rd, 2014

Nanotubes/Buckyballs

Amino-functionalized carbon nanotubes act as a carrier for nerve growth factor April 21st, 2014

Effects of Carbon Nanotubes Studied on Pregnant Mothers April 12th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Scientists Succeed in Simultaneous Determination of Acetaminophen, Codeine in Drug Samples April 9th, 2014

Discoveries

Like a hall of mirrors, nanostructures trap photons inside ultrathin solar cells April 22nd, 2014

Nanomaterial Outsmarts Ions April 22nd, 2014

Vacuum Ultraviolet Lamp of the Future Created in Japan: First Solid-State Vacuum UV Phosphor, Described in APL-Materials, Promises Smaller, Safer, Longer Lasting, Low Power Lamps for Industrial Applications April 22nd, 2014

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

Announcements

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

PETA science consortium to present hazard testing strategy at nanotoxicology meeting: High tech field ripe for use of sophisticated non-animal testing strategies April 22nd, 2014

Harris & Harris Group Notes the Receipt of Proceeds From the Sale of Molecular Imprints' Semiconductor Business to Canon April 22nd, 2014

National Space Society Congratulates SpaceX on the Success of CRS-3 and the First Flight of the Falcon 9R April 22nd, 2014

Research partnerships

University of Waterloo Visits China to Strengthen Bonds With Research Partners April 21st, 2014

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Scalable CVD process for making 2-D molybdenum diselenide: Rice, NTU scientists unveil CVD production for coveted 2-D semiconductor April 8th, 2014

Quantum nanoscience

A new key to unlocking the mysteries of physics? Quantum turbulence April 21st, 2014

Quantum manipulation: Filling the gap between quantum and classical world April 14th, 2014

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014

Quantum Photon Properties Revealed in Another Particle—the Plasmon April 5th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE