Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Quantum spin-liquid simulated

The simulation of the quantum spin-liquid was performed on a flat honeycomb structure, where the electrons show a dynamical phase lacking any order.
The simulation of the quantum spin-liquid was performed on a flat honeycomb structure, where the electrons show a dynamical phase lacking any order.

Abstract:
A starting point for superconductivity?

Quantum spin-liquid simulated

Germany | Posted on April 13th, 2010

An exotic state of matter that physicists call a "quantum spin-liquid" can be realized by electrons in a honeycomb crystal structure. This is shown by scientists from the Universities of Stuttgart and Würzburg, Germany in the Nature magazine.

Electrons inside a crystal exist in different states. In many cases it is the crystal structure that decides, if the material is a metal with a finite electric conductivity, or if it is an insulator, which does not carry an electric current. But there also exist insulating materials, whose crystal structures suggest that they should behave like metals. Such materials are called "Mott insulators", and it is the repulsion between the electrons, that suppresses a metallic behaviour, such that the electrons are locked to the atoms.

Such localized electrons tend to order upon lowering the temperature, such as for example in magnetic structures. A "quantum spin-liquid" however is a non-magnetic Mott-insulator that is stabilized purely by quantum mechanical effects. The electrons inside a quantum spin-liquid resist to order down to the lowest temperatures, way down to the absolute zero of temperature at minus 273 degrees Celsius. The tendency to order is suppressed by dynamical fluctuations of the electrons even at zero absolute temperature (quantum fluctuations). For this to happen, the quantum fluctuations must be sufficiently large, which is rarely the case in nature, and also hard to realize in realistic models.

Now theorists from Stuttgart University, Zi Yang Meng, Priv.-Doz. Stefan Wessel, and Prof. Alejandro Muramatsu, together with their colleges Thomas Lang and Prof. Fakher Assaad from Würzburg University, showed that such a quantum spin-liquid exists in a realistic model of interacting electrons. For their study, they used large-scale computer simulations, in order to account for both the interactions between the electrons and their quantum fluctuations. Their unexpected findings were thus accepted for publication in the Nature magazine.

The quantum spin-liquid found by Meng et al. occurs in materials where the atoms form a two-dimensional, periodic array of hexagons, thus realizing a honeycomb lattice. Such a crystal structre is found for example in Graphene, a two-dimensional carbon allotrope, that was only recently synthesized, and has since then been the focus of intensive research. If the electronic interactions could be enhanced in such a material, then the highly interesting quantum spin-liquid state could be realized. It appears unlikly that this can be achieved, for example by expansion, in Graphene. Thus, the physicists from Stuttgart and Würzburg suggest exploring honeycomb-like structures formed from other group IV elements that show enhanced electronic interactions. A first step in this direction might already have been taken, since previously chemist succeeded in synthesizing Graphene-like structures of silicon atoms.

Furthermore, the quantum spin-liquid should also be realizable using ultra-cold atoms. In fact, the mathematical model studied by the physicists describes both interacting electrons in solid state systems as well as interacting ultra-cold atoms in an optical lattice. The impressive progress that has been achieved in this research field opens up the possibility to realize the quantum spin-liquid with ultra-cold atoms.

Another fascinating aspect of the quantum spin-liquid is that it can also be viewed as a starting point for superconductivity. Electric currents would then flow without resistance through the material. This has potential for many applications, such as ultra fast computers or the dissipation free transport of electricity.

In their fundamental research, the two theory groups in Stuttgart and Würzburg analyse complex phases of strongly interacting quantum many-body systems in general. They discovered the quantum spin-liquid phase, while studying possible transitions between metallic and insulating phases in a model for Graphene. In the vicinity of such transitions, the quantum fluctuations become significantly enhanced, and destroy any magnetic order. The scientists could also exclude other types of electronic orders from an extensive analysis. Such a study was only possible with the help of modern supercomputers. In particular, for their calculations, the theorists could profit from the highly efficient supercomputer centers in Jülich, München and Stuttgart. For the future, they hope to apply simulations of strongly interacting electrons also to the design of novel materials that realize exotic states of matter - including the quantum spin-liquid.

The research described above is embedded within the general research activities of the two universities. At the University of Stuttgart, the DFG research unit SFB/TRR 21, "Controll of Quantum Correlations in Tailored Matter", focuses on the realization of tailored quantum systems. Its spokesperson is Prof. Tilmann Pfau from the University of Stuttgart. At the University of Würzburg, a recently established research group "Electron Correlation-Induced Phenomena in Surfaces and Interfaces with Tuneable Interactions" complex electronic states are of central focus. Its spokesperson is Prof. Ralph Claessen from Würzburg University.

Reference
Quantum spin-liquid emerging in two-dimensional correlated Dirac fermions, Zi Yang Meng, Thomas C. Lang, Stefan Wessel, Fakher F. Assaad, and Alejandro Muramatsu, Nature, DOI:10.1038/nature08942

####

For more information, please click here

Contacts:
PD Dr. Stefan Wessel and Prof. Dr. Alejandro Muramatsu
Institut für Theoretische Physik III, Universität Stuttgart
Phone 0049.711/685-65206/65204

Prof. Dr. Fakher Assaad
Institut für Theoretische Physik der Universität Würzburg
Phone 0049.931/31-83652

Copyright © Universität Stuttgart

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanobiotix: The Independent Data Monitoring Committee Recommends the Continuation of the Ongoing Phase II/III Trial of NBTXR3 in Soft Tissue Sarcoma March 23rd, 2017

Leti Presents Advances in Propagation Modeling and Antenna Design for mmWave Spectrum: Paper Is One of 15 that Leti Presented at European Conference on Antennas and Propagation March 19-24 March 23rd, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Possible Futures

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Rare-earths become water-repellent only as they age March 22nd, 2017

Academic/Education

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Nanotubes/Buckyballs/Fullerenes

Intertronics introduce new nanoparticle deagglomeration technology March 15th, 2017

Boron atoms stretch out, gain new powers: Rice University simulations demonstrate 1-D material's stiffness, electrical versatility January 26th, 2017

New stem cell technique shows promise for bone repair January 25th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Discoveries

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

Announcements

Nanobiotix: The Independent Data Monitoring Committee Recommends the Continuation of the Ongoing Phase II/III Trial of NBTXR3 in Soft Tissue Sarcoma March 23rd, 2017

Leti Presents Advances in Propagation Modeling and Antenna Design for mmWave Spectrum: Paper Is One of 15 that Leti Presented at European Conference on Antennas and Propagation March 19-24 March 23rd, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Research partnerships

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

Nanoparticle paves the way for new triple negative breast cancer drug March 20th, 2017

Quantum nanoscience

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Quantum simulation technique yields topological soliton state in SSH model January 3rd, 2017

Diamonds are technologists' best friends: Researchers from the Lomonosov Moscow State University have grown needle- and thread-like diamonds and studied their useful properties December 30th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project