Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Quantum spin-liquid simulated

The simulation of the quantum spin-liquid was performed on a flat honeycomb structure, where the electrons show a dynamical phase lacking any order.
The simulation of the quantum spin-liquid was performed on a flat honeycomb structure, where the electrons show a dynamical phase lacking any order.

Abstract:
A starting point for superconductivity?

Quantum spin-liquid simulated

Germany | Posted on April 13th, 2010

An exotic state of matter that physicists call a "quantum spin-liquid" can be realized by electrons in a honeycomb crystal structure. This is shown by scientists from the Universities of Stuttgart and Würzburg, Germany in the Nature magazine.

Electrons inside a crystal exist in different states. In many cases it is the crystal structure that decides, if the material is a metal with a finite electric conductivity, or if it is an insulator, which does not carry an electric current. But there also exist insulating materials, whose crystal structures suggest that they should behave like metals. Such materials are called "Mott insulators", and it is the repulsion between the electrons, that suppresses a metallic behaviour, such that the electrons are locked to the atoms.

Such localized electrons tend to order upon lowering the temperature, such as for example in magnetic structures. A "quantum spin-liquid" however is a non-magnetic Mott-insulator that is stabilized purely by quantum mechanical effects. The electrons inside a quantum spin-liquid resist to order down to the lowest temperatures, way down to the absolute zero of temperature at minus 273 degrees Celsius. The tendency to order is suppressed by dynamical fluctuations of the electrons even at zero absolute temperature (quantum fluctuations). For this to happen, the quantum fluctuations must be sufficiently large, which is rarely the case in nature, and also hard to realize in realistic models.

Now theorists from Stuttgart University, Zi Yang Meng, Priv.-Doz. Stefan Wessel, and Prof. Alejandro Muramatsu, together with their colleges Thomas Lang and Prof. Fakher Assaad from Würzburg University, showed that such a quantum spin-liquid exists in a realistic model of interacting electrons. For their study, they used large-scale computer simulations, in order to account for both the interactions between the electrons and their quantum fluctuations. Their unexpected findings were thus accepted for publication in the Nature magazine.

The quantum spin-liquid found by Meng et al. occurs in materials where the atoms form a two-dimensional, periodic array of hexagons, thus realizing a honeycomb lattice. Such a crystal structre is found for example in Graphene, a two-dimensional carbon allotrope, that was only recently synthesized, and has since then been the focus of intensive research. If the electronic interactions could be enhanced in such a material, then the highly interesting quantum spin-liquid state could be realized. It appears unlikly that this can be achieved, for example by expansion, in Graphene. Thus, the physicists from Stuttgart and Würzburg suggest exploring honeycomb-like structures formed from other group IV elements that show enhanced electronic interactions. A first step in this direction might already have been taken, since previously chemist succeeded in synthesizing Graphene-like structures of silicon atoms.

Furthermore, the quantum spin-liquid should also be realizable using ultra-cold atoms. In fact, the mathematical model studied by the physicists describes both interacting electrons in solid state systems as well as interacting ultra-cold atoms in an optical lattice. The impressive progress that has been achieved in this research field opens up the possibility to realize the quantum spin-liquid with ultra-cold atoms.

Another fascinating aspect of the quantum spin-liquid is that it can also be viewed as a starting point for superconductivity. Electric currents would then flow without resistance through the material. This has potential for many applications, such as ultra fast computers or the dissipation free transport of electricity.

In their fundamental research, the two theory groups in Stuttgart and Würzburg analyse complex phases of strongly interacting quantum many-body systems in general. They discovered the quantum spin-liquid phase, while studying possible transitions between metallic and insulating phases in a model for Graphene. In the vicinity of such transitions, the quantum fluctuations become significantly enhanced, and destroy any magnetic order. The scientists could also exclude other types of electronic orders from an extensive analysis. Such a study was only possible with the help of modern supercomputers. In particular, for their calculations, the theorists could profit from the highly efficient supercomputer centers in Jülich, München and Stuttgart. For the future, they hope to apply simulations of strongly interacting electrons also to the design of novel materials that realize exotic states of matter - including the quantum spin-liquid.

The research described above is embedded within the general research activities of the two universities. At the University of Stuttgart, the DFG research unit SFB/TRR 21, "Controll of Quantum Correlations in Tailored Matter", focuses on the realization of tailored quantum systems. Its spokesperson is Prof. Tilmann Pfau from the University of Stuttgart. At the University of Würzburg, a recently established research group "Electron Correlation-Induced Phenomena in Surfaces and Interfaces with Tuneable Interactions" complex electronic states are of central focus. Its spokesperson is Prof. Ralph Claessen from Würzburg University.

Reference
Quantum spin-liquid emerging in two-dimensional correlated Dirac fermions, Zi Yang Meng, Thomas C. Lang, Stefan Wessel, Fakher F. Assaad, and Alejandro Muramatsu, Nature, DOI:10.1038/nature08942

####

For more information, please click here

Contacts:
PD Dr. Stefan Wessel and Prof. Dr. Alejandro Muramatsu
Institut für Theoretische Physik III, Universität Stuttgart
Phone 0049.711/685-65206/65204

Prof. Dr. Fakher Assaad
Institut für Theoretische Physik der Universität Würzburg
Phone 0049.931/31-83652

Copyright © Universität Stuttgart

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Research partnerships

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Quantum nanoscience

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Bridging light and electrons January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Physicists ‘entangle’ individual molecules for the first time, hastening possibilities for quantum information processing: In work that could lead to more robust quantum computing, Princeton researchers have succeeded in forcing molecules into quantum entanglement December 8th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project