Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Viruses harnessed to split water

A computer visualization of the biologically-based system shows the virus itself (in yellow) with molecules of pigment (in pink) and of the metal catalyst (brown spheres) attached to its surface. The pigment and catalyst cause water molecules to split apart when they come in contact. Graphic courtesy of Angela Belcher
A computer visualization of the biologically-based system shows the virus itself (in yellow) with molecules of pigment (in pink) and of the metal catalyst (brown spheres) attached to its surface. The pigment and catalyst cause water molecules to split apart when they come in contact. Graphic courtesy of Angela Belcher

Abstract:
MIT team's biologically based system taps the power of sunlight directly, with the aim of turning water into hydrogen fuel.

By David L. Chandler, MIT News Office

Viruses harnessed to split water

Cambridge, MA | Posted on April 13th, 2010

A team of MIT researchers has found a novel way to mimic the process by which plants use the power of sunlight to split water and make chemical fuel to power their growth. In this case, the team used a modified virus as a kind of biological scaffold that can assemble the nanoscale components needed to split the hydrogen and oxygen atoms of a water molecule.

Splitting water is one way to solve the basic problem of solar energy: It's only available when the sun shines. By using sunlight to make hydrogen from water, the hydrogen can then be stored and used at any time to generate electricity using a fuel cell, or to make liquid fuels (or be used directly) for cars and trucks.

Other researchers have made systems that use electricity, which can be provided by solar panels, to split water molecules, but the new biologically based system skips the intermediate steps and uses sunlight to power the reaction directly. The advance is described in a paper published on April 11 in Nature Nanotechnology. The Italian energy company Eni supported the research through the MIT Energy Initiative (MITEI).

The team, led by Angela Belcher, the Germeshausen Professor of Materials Science and Engineering and Biological Engineering, engineered a common, harmless bacterial virus called M13 so that it would attract and bind with molecules of a catalyst (the team used iridium oxide) and a biological pigment (zinc porphyrins). The viruses became wire-like devices that could very efficiently split the oxygen from water molecules.

Over time, however, the virus-wires would clump together and lose their effectiveness, so the researchers added an extra step: encapsulating them in a microgel matrix, so they maintained their uniform arrangement and kept their stability and efficiency.

While hydrogen obtained from water is the gas that would be used as a fuel, the splitting of oxygen from water is the more technically challenging "half-reaction" in the process, Belcher explains, so her team focused on this part. Plants and cyanobacteria (also called blue-green algae), she says, "have evolved highly organized photosynthetic systems for the efficient oxidation of water." Other researchers have tried to use the photosynthetic parts of plants directly for harnessing sunlight, but these materials can have structural stability issues.

Belcher decided that instead of borrowing plants' components, she would borrow their methods. In plant cells, natural pigments are used to absorb sunlight, while catalysts then promote the water-splitting reaction. That's the process Belcher and her team, including doctoral student Yoon Sung Nam, the lead author of the new paper, decided to imitate.

In the team's system, the viruses simply act as a kind of scaffolding, causing the pigments and catalysts to line up with the right kind of spacing to trigger the water-splitting reaction. The role of the pigments is "to act as an antenna to capture the light," Belcher explains, "and then transfer the energy down the length of the virus, like a wire. The virus is a very efficient harvester of light, with these porphyrins attached.

"We use components people have used before," she adds, "but we use biology to organize them for us, so you get better efficiency."

Using the virus to make the system assemble itself improves the efficiency of the oxygen production fourfold, Nam says. The researchers hope to find a similar biologically based system to perform the other half of the process, the production of hydrogen. Currently, the hydrogen atoms from the water get split into their component protons and electrons; a second part of the system, now being developed, would combine these back into hydrogen atoms and molecules. The team is also working to find a more commonplace, less-expensive material for the catalyst, to replace the relatively rare and costly iridium used in this proof-of-concept study.

Thomas Mallouk, the DuPont Professor of Materials Chemistry and Physics at Pennsylvania State University, who was not involved in this work, says, "This is an extremely clever piece of work that addresses one of the most difficult problems in artificial photosynthesis, namely, the nanoscale organization of the components in order to control electron transfer rates."

He adds: "There is a daunting combination of problems to be solved before this or any other artificial photosynthetic system could actually be useful for energy conversion." To be cost-competitive with other approaches to solar power, he says, the system would need to be at least 10 times more efficient than natural photosynthesis, be able to repeat the reaction a billion times, and use less expensive materials. "This is unlikely to happen in the near future," he says. "Nevertheless, the design idea illustrated in this paper could ultimately help with an important piece of the puzzle."

Belcher will not even speculate about how long it might take to develop this into a commercial product, but she says that within two years she expects to have a prototype device that can carry out the whole process of splitting water into oxygen and hydrogen, using a self-sustaining and durable system.

####

For more information, please click here

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Microcombing' creates stronger, more conductive carbon nanotube films May 5th, 2015

Testing Facility for Graphene Enhanced Composite Pipes May 5th, 2015

Arrowhead Completes Dosing Healthy Volunteers and Initiates Transition to Patients in Phase 1 Study of ARC-AAT May 5th, 2015

Silicon Storage Technology and GLOBALFOUNDRIES Announce Qualification of Automotive Grade 55nm Embedded Flash Memory Technology May 5th, 2015

Possible Futures

Printing Silicon on Paper, with Lasers April 21st, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Academic/Education

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GWs new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

SUNY Poly and Sematech Announce Air Products Joins Cutting-Edge CMP Center At Albany Nanotech Complex April 28th, 2015

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Announcements

'Microcombing' creates stronger, more conductive carbon nanotube films May 5th, 2015

Testing Facility for Graphene Enhanced Composite Pipes May 5th, 2015

Arrowhead Completes Dosing Healthy Volunteers and Initiates Transition to Patients in Phase 1 Study of ARC-AAT May 5th, 2015

Silicon Storage Technology and GLOBALFOUNDRIES Announce Qualification of Automotive Grade 55nm Embedded Flash Memory Technology May 5th, 2015

Energy

Testing Facility for Graphene Enhanced Composite Pipes May 5th, 2015

Engineering a better solar cell: UW research pinpoints defects in popular perovskites May 1st, 2015

Artificial photosynthesis could help make fuels, plastics and medicine April 29th, 2015

Unique microscopic images provide new insights into ionic liquids April 28th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Oxford Instruments announces winners of the 2015 Sir Martin Wood Science Prize for China May 2nd, 2015

Rice University's Richards-Kortum, Vardi elected to National Academy of Sciences: Bioengineer, computer scientist join elite list of dual-academy members April 29th, 2015

Two-dimensional semiconductor comes clean April 27th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Solar/Photovoltaic

Engineering a better solar cell: UW research pinpoints defects in popular perovskites May 1st, 2015

Artificial photosynthesis could help make fuels, plastics and medicine April 29th, 2015

Unique microscopic images provide new insights into ionic liquids April 28th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project