Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Wireless nano sensors could save bridges, buildings

Abstract:
Could inexpensive wireless sensors based on nanotechnology be used to alert engineers to problematic cracks and damage to buildings, bridges, and other structures before they become critical? A feasibility study published in the International Journal of Materials and Structural Integrity would suggest so.

Wireless nano sensors could save bridges, buildings

Posted on April 9th, 2010

Mohamed Saafi of the Department of Construction Engineering and Management, at North Dakota State University, in Fargo, and colleagues at the National Institute of Applied Sciences, in Tunisia, together with a team at the Department of Engineering Technology, at Alabama A&M University, point out that civil structures are prone to continuous and uncontrollable damage processes during their designed service lifespan. These damaging processes might be due to weather, aging of materials, earth tremors, and a lack of maintenance.

A continuous monitoring system is needed to improve safety. Unfortunately, the costs and required time expenditure often mean monitoring is not carried out in a timely manner and trivial problems, such as small cracks and fissures, ultimately become serious conditions that threaten the integrity of a structure. The researchers suggest that nanotechnology and wireless systems could be the answer.

As a proof of concept, the researchers have developed and evaluated two types of wireless devices for the remote monitoring of concrete structures. The devices are sensors based on microelectromechanical systems, MEMS, and were designed to monitor temperature and moisture within the concrete. Long gauge nanotube sensors were employed for crack detection in the feasibility study. MEMS and nanosensors have already been used in a wide range of engineering and science fields such as transportation, communication, military and medicine. Their use in civil engineering is a new application with great potential.

"If designed properly, wireless MEMS and nanotechnology-based sensors could be used as embedded components to form self-sensing concrete structures," the team explains. Such devices would gather and transmit information about the health of a structure by detecting the early formation of tiny cracks and measuring the rate of key parameters, such as temperature, moisture, chloride, acidity and carbon dioxide levels each of which might reflect a decrease in structural integrity.

"Information obtained from such monitoring techniques would allow the owners to make critical decisions regarding operation, maintenance, repair and replacement under financial constraints," the team says.

####

For more information, please click here

Contacts:
Mohamed Saafi

256-683-1839

Copyright © Eurekalert

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultracold molecules hold promise for quantum computing: New approach yields long-lasting configurations that could provide long-sought “qubit” material July 27th, 2017

Atomic discovery opens door to greener, faster, smaller electronic circuitry: Scientists find way to correct communication pathways in silicon chips, making them perfect July 27th, 2017

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Possible Futures

Ultracold molecules hold promise for quantum computing: New approach yields long-lasting configurations that could provide long-sought “qubit” material July 27th, 2017

Atomic discovery opens door to greener, faster, smaller electronic circuitry: Scientists find way to correct communication pathways in silicon chips, making them perfect July 27th, 2017

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

MEMS

First Capacitive Transducer with 13nm Gap July 27th, 2017

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Killing cancer in the heat of the moment: A new method efficiently transfers genes into cells, then activates them with light. This could lead to gene therapies for cancers July 9th, 2017

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

Sensors

Giant enhancement of electromagnetic waves revealed within small dielectric particles: Scientists have done for the first time direct measurements of giant electromagnetic fields July 8th, 2017

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Leti’s Autonomous-Vehicle System Embedded in Infineon’s AURIX Platform: Leti’s Low-Power, Multi-Sensor System that Transforms Distance Data into Clear Information About the Driving Environment Will Be Demonstrated at ITS Meeting in Strasbourg, June 19-22 June 20th, 2017

New diode features optically controlled capacitance: Israeli researchers have developed a new optically tunable capacitor with embedded metal nanoparticles, creating a metal-insulator-semiconductor diode that is tunable by illumination. June 8th, 2017

Announcements

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Construction

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Next-gen steel under the microscope March 18th, 2017

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project