Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Wireless nano sensors could save bridges, buildings

Abstract:
Could inexpensive wireless sensors based on nanotechnology be used to alert engineers to problematic cracks and damage to buildings, bridges, and other structures before they become critical? A feasibility study published in the International Journal of Materials and Structural Integrity would suggest so.

Wireless nano sensors could save bridges, buildings

Posted on April 9th, 2010

Mohamed Saafi of the Department of Construction Engineering and Management, at North Dakota State University, in Fargo, and colleagues at the National Institute of Applied Sciences, in Tunisia, together with a team at the Department of Engineering Technology, at Alabama A&M University, point out that civil structures are prone to continuous and uncontrollable damage processes during their designed service lifespan. These damaging processes might be due to weather, aging of materials, earth tremors, and a lack of maintenance.

A continuous monitoring system is needed to improve safety. Unfortunately, the costs and required time expenditure often mean monitoring is not carried out in a timely manner and trivial problems, such as small cracks and fissures, ultimately become serious conditions that threaten the integrity of a structure. The researchers suggest that nanotechnology and wireless systems could be the answer.

As a proof of concept, the researchers have developed and evaluated two types of wireless devices for the remote monitoring of concrete structures. The devices are sensors based on microelectromechanical systems, MEMS, and were designed to monitor temperature and moisture within the concrete. Long gauge nanotube sensors were employed for crack detection in the feasibility study. MEMS and nanosensors have already been used in a wide range of engineering and science fields such as transportation, communication, military and medicine. Their use in civil engineering is a new application with great potential.

"If designed properly, wireless MEMS and nanotechnology-based sensors could be used as embedded components to form self-sensing concrete structures," the team explains. Such devices would gather and transmit information about the health of a structure by detecting the early formation of tiny cracks and measuring the rate of key parameters, such as temperature, moisture, chloride, acidity and carbon dioxide levels each of which might reflect a decrease in structural integrity.

"Information obtained from such monitoring techniques would allow the owners to make critical decisions regarding operation, maintenance, repair and replacement under financial constraints," the team says.

####

For more information, please click here

Contacts:
Mohamed Saafi

256-683-1839

Copyright © Eurekalert

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Possible Futures

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

MEMS

Engineers shrink microscope to dime-sized device February 17th, 2017

Leti Coordinating Project to Adapt Obstacle-Detection Technology Used in Autonomous Cars for Portable and Wearable Systems: INSPEX to Combine Knowhow of Nine European Organizations to Create Portable and Wearable Spatial-Exploration Systems February 2nd, 2017

Manufacturing platform makes intricate biocompatible micromachines January 7th, 2017

STMicroelectronics Peps Up Booming Social-Fitness Scene with Smart Motion Sensors for Better Accuracy, Longer Battery Life, and Faster Time to Market January 2nd, 2017

Nanotubes/Buckyballs/Fullerenes

Boron atoms stretch out, gain new powers: Rice University simulations demonstrate 1-D material's stiffness, electrical versatility January 26th, 2017

New stem cell technique shows promise for bone repair January 25th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

Sensors

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Metamaterial: Mail armor inspires physicists: KIT researchers reverse hall coefficient -- medieval mail armor inspired development of metamaterial with novel properties February 15th, 2017

Highly sensitive gas sensors for volatile organic compound detection February 6th, 2017

Announcements

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Construction

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

New low-cost technique converts bulk alloys to oxide nanowires January 24th, 2017

Rice U probes ways to turn cement's weakness to strength: Rice University lab's calculations show new mechanisms to induce strength, ductility into concrete January 6th, 2017

Diamond nanothread: Versatile new material could prove priceless for manufacturing: Would you dress in diamond nanothreads? It's not as far-fetched as you might think November 3rd, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project