Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Brown University Scientists Discover New Principle in Material Science

Atomic Strength: A material science team led by Brown University engineers has found that the deformation of nanotwinned metals is characterized by the motion of highly ordered, necklace-like patterns of crystal defects called dislocations. Credit: Huajian Gao and Xiaoyan Li/Brown University
Atomic Strength: A material science team led by Brown University engineers has found that the deformation of nanotwinned metals is characterized by the motion of highly ordered, necklace-like patterns of crystal defects called dislocations. Credit: Huajian Gao and Xiaoyan Li/Brown University

Abstract:
A material science team led by Brown University engineers has found that the deformation of nanotwinned metals is characterized by the motion of highly ordered, necklace-like patterns of crystal defects called dislocations.

Brown University Scientists Discover New Principle in Material Science

Providence, RI | Posted on April 8th, 2010

Materials scientists have known that a metal's strength (or weakness) is governed by dislocation interactions, a messy exchange of intersecting fault lines that move or ripple within metallic crystals. But what happens when metals are engineered at the nanoscale? Is there a way to make metals stronger and more ductile by manipulating their nanostructures?

Brown University scientists may have figured out a way. In a paper published in Nature, Huajian Gao and researchers from the University of Alabama and China report a new mechanism that governs the peak strength of nanostructured metals. By performing 3-D atomic simulations of divided grains of nanostructured metals, Gao and his team observed that dislocations organize themselves in highly ordered, necklace-like patterns throughout the material. The nucleation of this dislocation pattern is what determines the peak strength of materials, the researchers report.

The finding could open the door to producing stronger, more ductile metals, said Gao, professor of engineering at Brown. "This is a new theory governing strength in materials science," he added. "Its significance is that it reveals a new mechanism of material strength that is unique for nanostructured materials."

Divide a grain of metal using a specialized technique, and the pieces may reveal boundaries within the grain that scientists refer to as twin boundaries. These are generally flat, crystal surfaces that mirror the crystal orientations across them. The Chinese authors created nanotwinned boundaries in copper and were analyzing the space between the boundaries when they made an interesting observation: The copper got stronger as the space between the boundaries decreased from 100 nanometers, ultimately reaching a peak of strength at 15 nanometers. However, as the spacing decreased from 15 nanometers, the metal got weaker.

"This is very puzzling," Gao said.

So Gao and Brown graduate student Xiaoyan Li dug a little further. The Brown scientists reproduced their collaborators' experiment in computer simulations involving 140 million atoms. They used a supercomputer at the National Institute for Computational Sciences in Tennessee, which allowed them to analyze the twin boundaries at the atomic scale. To their surprise, they saw an entirely new phenomenon: A highly ordered dislocation pattern controlled by nucleation had taken hold and dictated the copper's strength. The pattern was characterized by groups of atoms near the dislocation core and assembled in highly ordered, necklace-like patterns.

"They're not getting in each other's way. They're very organized," Gao said.

From the experiments and the computer modeling, the researchers theorize that at the nanoscale, dislocation nucleation can become the governing principle to determining a metal's strength or weakness. The authors presented a new equation in the Nature paper to describe the principle.

"Our work provides a concrete example of a source-controlled deformation mechanism in nanostructured materials for the first time and, as such, can be expected to have a profound impact on the field of materials science," Gao said.

The other researchers who contributed to the paper are Yujie Wei from the University of Alabama and Ke Lu and Lei Lu from the Chinese Academy of Sciences. The U.S. National Science Foundation, the National Science Foundation in China and the Ministry of Science and Technology in China funded the research.

####

For more information, please click here

Contacts:
Richard Lewis
(401) 863-3766

Copyright © Brown University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Hiden Release New Gas Analysis Catalogue August 21st, 2014

Wyatt Technology’s 24th International Light Scattering Colloquium to Highlight Developments in Applications and Characterization of Nanoparticles August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Academic/Education

SEMATECH and Newly Merged SUNY CNSE/SUNYIT Launch New Patterning Center to Further Advance Materials Development: Center to Provide Access to Critical Tools that Support Semiconductor Technology Node Development August 7th, 2014

Oxford Instruments Asylum Research and the Center for Nanoscale Systems at Harvard University Present a Workshop on AFM Nanomechanical and Nanoelectrical Characterization, Aug. 21-22 August 6th, 2014

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Haydale Announces Collaboration Agreement with Swansea University’s Welsh Centre for Printing and Coatings (WCPC) July 12th, 2014

Discoveries

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Materials/Metamaterials

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Nano Bonds Increase Raw Strength of Fireproof Concretes August 18th, 2014

Announcements

Wyatt Technology’s 24th International Light Scattering Colloquium to Highlight Developments in Applications and Characterization of Nanoparticles August 21st, 2014

Ultra-short pulse lasers & Positioning August 21st, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Research partnerships

Сalculations with Nanoscale Smart Particles August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Nano Bonds Increase Raw Strength of Fireproof Concretes August 18th, 2014

Production of Toxic Ion Nanosorbents with High Sorption Capacity in Iran August 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE