Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Brown University Scientists Discover New Principle in Material Science

Atomic Strength: A material science team led by Brown University engineers has found that the deformation of nanotwinned metals is characterized by the motion of highly ordered, necklace-like patterns of crystal defects called dislocations. Credit: Huajian Gao and Xiaoyan Li/Brown University
Atomic Strength: A material science team led by Brown University engineers has found that the deformation of nanotwinned metals is characterized by the motion of highly ordered, necklace-like patterns of crystal defects called dislocations. Credit: Huajian Gao and Xiaoyan Li/Brown University

Abstract:
A material science team led by Brown University engineers has found that the deformation of nanotwinned metals is characterized by the motion of highly ordered, necklace-like patterns of crystal defects called dislocations.

Brown University Scientists Discover New Principle in Material Science

Providence, RI | Posted on April 8th, 2010

Materials scientists have known that a metal's strength (or weakness) is governed by dislocation interactions, a messy exchange of intersecting fault lines that move or ripple within metallic crystals. But what happens when metals are engineered at the nanoscale? Is there a way to make metals stronger and more ductile by manipulating their nanostructures?

Brown University scientists may have figured out a way. In a paper published in Nature, Huajian Gao and researchers from the University of Alabama and China report a new mechanism that governs the peak strength of nanostructured metals. By performing 3-D atomic simulations of divided grains of nanostructured metals, Gao and his team observed that dislocations organize themselves in highly ordered, necklace-like patterns throughout the material. The nucleation of this dislocation pattern is what determines the peak strength of materials, the researchers report.

The finding could open the door to producing stronger, more ductile metals, said Gao, professor of engineering at Brown. "This is a new theory governing strength in materials science," he added. "Its significance is that it reveals a new mechanism of material strength that is unique for nanostructured materials."

Divide a grain of metal using a specialized technique, and the pieces may reveal boundaries within the grain that scientists refer to as twin boundaries. These are generally flat, crystal surfaces that mirror the crystal orientations across them. The Chinese authors created nanotwinned boundaries in copper and were analyzing the space between the boundaries when they made an interesting observation: The copper got stronger as the space between the boundaries decreased from 100 nanometers, ultimately reaching a peak of strength at 15 nanometers. However, as the spacing decreased from 15 nanometers, the metal got weaker.

"This is very puzzling," Gao said.

So Gao and Brown graduate student Xiaoyan Li dug a little further. The Brown scientists reproduced their collaborators' experiment in computer simulations involving 140 million atoms. They used a supercomputer at the National Institute for Computational Sciences in Tennessee, which allowed them to analyze the twin boundaries at the atomic scale. To their surprise, they saw an entirely new phenomenon: A highly ordered dislocation pattern controlled by nucleation had taken hold and dictated the copper's strength. The pattern was characterized by groups of atoms near the dislocation core and assembled in highly ordered, necklace-like patterns.

"They're not getting in each other's way. They're very organized," Gao said.

From the experiments and the computer modeling, the researchers theorize that at the nanoscale, dislocation nucleation can become the governing principle to determining a metal's strength or weakness. The authors presented a new equation in the Nature paper to describe the principle.

"Our work provides a concrete example of a source-controlled deformation mechanism in nanostructured materials for the first time and, as such, can be expected to have a profound impact on the field of materials science," Gao said.

The other researchers who contributed to the paper are Yujie Wei from the University of Alabama and Ke Lu and Lei Lu from the Chinese Academy of Sciences. The U.S. National Science Foundation, the National Science Foundation in China and the Ministry of Science and Technology in China funded the research.

####

For more information, please click here

Contacts:
Richard Lewis
(401) 863-3766

Copyright © Brown University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Govt.-Legislation/Regulation/Funding/Policy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Possible Futures

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Discoveries

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Materials/Metamaterials

Inside tiny tubes, water turns solid when it should be boiling: MIT researchers discover astonishing behavior of water confined in carbon nanotubes November 30th, 2016

From champagne bubbles, dance parties and disease to new nanomaterials: Understanding nucleation of protein filaments might help with Alzheimer's Disease and type 2 Diabetes November 24th, 2016

Uncovering the secrets of friction on graphene: Sliding on flexible graphene surfaces has been uncharted territory until now November 23rd, 2016

2-D material a brittle surprise: Rice University researchers finds molybdenum diselenide not as strong as they thought November 14th, 2016

Announcements

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Research partnerships

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Single photon converter -- a key component of quantum internet November 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project