Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

android tablet pc

Home > Press > NREL Finds a Way to Give LEDs the Green Light

NREL's Solar Energy Research Facility is the site of experiments using lasers to probe the light-emitting properties of gallium indium phosphide alloys for making light-emitting diodes.  Credit: NREL file photo
NREL's Solar Energy Research Facility is the site of experiments using lasers to probe the light-emitting properties of gallium indium phosphide alloys for making light-emitting diodes. Credit: NREL file photo

Light bulbs that last 100 years and fill rooms with brilliant ambiance may become a reality sooner rather than later, thanks to a National Renewable Energy Laboratory discovery.

By Bill Scanlon

NREL Finds a Way to Give LEDs the Green Light

Golden, CO | Posted on April 6th, 2010

NREL scientists found a way to generate a tricky combination of green and red that may just prove to be the biggest boost for illumination since Edison's light bulb.

Green isn't just a symbol of environmentalism, it is a real color, and a desperately needed one for researchers looking for a way to light homes, streets and buildings at a fraction of today's costs.

LEDs — light-emitting diodes — are the promise of the future because unlike tungsten bulbs or compact fluorescent bulbs, they deliver most of their energy as light, rather than heat. An extra plus is that they don't contain dangerous mercury.

The era of LEDs is fast approaching. The U.S. Department of Energy expects to phase out tungsten bulbs in four years and compact-fluorescents in 10 years. That will leave LEDs with virtually 100 percent of the market.

To make an LED that appears white, researchers minimally need the colors red, green and blue. The white light from the sun is really all the colors of the rainbow. Without at least red, blue and green from the spectrum, no lighting device will be practical for home or office use.

Red proved easy to generate, and about 15 years ago, Japanese scientists found a way to generate blue, thus providing two of the key colors from the spectrum of white light.

But green has been elusive. In fact, the $10 LEDs that people can buy now are made to look white by aiming the blue light at a phosphor, which then emits green. It works OK, but the clunky process saps a big chunk of the efficiency from the light.

NREL Jumps into LED Research via Solar Cells

Along came NREL, a world leader in designing solar cells, but a neophyte in the lighting realm.

NREL scientist Angelo Mascarenhas, who holds patents in solar-cell technology, realized that an LED is just the reverse of a solar cell. One takes electricity and turns it into light; the other takes sunlight and turns it into electricity.

"We'd been working with solar cells for 30 years," Mascarenhas said. "Could we find some device where we could just reverse the process of making solar cells?"

Indeed, Mascarenhas found it. NREL had won major scientific awards with its inverted metamorphic solar cells, in which the cells are built by combining layers of different lattice sizes to optimally capture solar energy. In fact, an NREL-produced IMM cell set a world record by converting 40 percent of absorbed sunlight into electricity.

Along the way, "We had already developed some of the know-how to capture sunlight in this green spectral region," Mascarenhas said. They hadn't reached there, because solar cells don't need a green, but they had begun to understand the challenges of getting to a green.

Solving a Decade-Old Conundrum

For a decade, LED researchers had tried and failed to make a reliable efficient green light by putting indium into gallium nitride.

"All signs indicated an impasse," Mascarenhas said. "When you come across an impasse, you don't just bang your head against the wall. You end up breaking your head, not the wall.

"Instead, you move away from the wall, you find a different path."

He and his fellow solar-cell researchers had dealt with the same problem trying to build a solar cell with gallium indium nitride. The problem with trying to make a green on gallium nitride is that the indium phase separates and cracks. When the lattices created by molecular gases don't match up with the lattices of the layer below, "It can't grow well and the efficiency is very, very poor," Mascarenhas said.

NREL's solar cell experts found a way around that. They put in some extra layers that gradually bridge the gap between the mismatched lattices of the cell layers.

"The approach is to grow a different material with an in-between lattice," Mascarenhas said.

The researchers deposited layers that had lattice patterns of atoms close to, but not exactly matching, the layers below. The tiny gap in size was at the so-called "elastic limit" of the material — close enough that the lattices bonded to each other and impurities were deflected away.

Then, add a third layer, this one again at the precise "elastic limit" of the one below. After about seven microns of layering, the result is a solar cell with a firm bond and almost no impurities.

Why not try that same process, only in reverse, to make a reliable deep-green LED using gallium nitride and indium?

A Deep Green on the Very First Try

Astonishingly, once the concept was understood, Mascarenhas's team produced a radiant deep green on their very first try — without any money backing the effort.

The aim now is to provide a fourth color to make that white light even whiter.

NREL plans to use a slightly deeper red and a lemony green, which would then be combined with a blue and a very deep green made using the gallium nitride based technology.

In three years, NREL should have a bi-colored device that when teamed with blue and deep green can produce a sterling LED with a color-rendering index well over 90, Mascarenhas said.

"It will give you one of the finest color-rendering white lights" and the manufacturing costs shouldn't increase, he said.

"We have a patent on a device that will provide these two colors, as one unit, to industry," Mascarenhas said. "They will arrange them like the mosaic in a fly's eye — our units side by side with the blue and deep green combination, alternating in a pattern."

"From afar, it will look like white. You won't be able to see the individual colors of the mosaic structure."

"We have full confidence that this is achievable," Mascarenhas said.

"The technical things will be solved," he said. "This is practical science, not pie-in-the-sky science."

The resulting white light LED will be intelligent. "We'll be able to electronically control the hue of the lamp," he said. "We can vary the combination of intensities of these four colors on an electronic circuit. By slightly increasing the blue, we can make it more suitable for daylight. By turning down the blue and increasing the reddish yellow, we can make it softer, more suitable for night. We can smoothly control the hue throughout the day like nobody has imagined. "

And, by the way, the move toward all LEDs all the time will save some $120 billion in electricity between now and 2030, the Department of Energy forecasts. Not to mention tens of millions of tons of greenhouse gases.

"This is reality," Mascarenhas said. "This is going to happen."

Learn more about NREL's solid-state spectroscopy research here:


For more information, please click here

National Renewable Energy Laboratory
1617 Cole Blvd.
Golden, CO 80401-3305

Main Phone Number
(303) 275-3000

Copyright © National Renewable Energy Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

NanoScience: Giants of the Infinitesimal July 31st, 2014

New imaging agent provides better picture of the gut July 30th, 2014

Nanometrics Reports Second Quarter 2014 Financial Results July 30th, 2014

Display technology/LEDs/SS Lighting/OLEDs

Martini Tech Inc. becomes the exclusive distributor for Yoshioka Seiko Co. porous chucks for Europe and North America July 20th, 2014

Carbodeon enables 20 percent increase in polymer thermal filler conductivity with 0.03 wt.% nanodiamond additive at a lower cost than with traditional fillers: Improved materials and processes enable nanodiamond cost reductions of up to 70 percent for electronics and LED app July 9th, 2014

'Nano-pixels' promise thin, flexible, high resolution displays July 9th, 2014

Projecting a Three-Dimensional Future: TAU researchers develop holography technology that could change the way we view the world July 9th, 2014

Possible Futures

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014


Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

New imaging agent provides better picture of the gut July 30th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

From Narrow to Broad July 30th, 2014


Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

NanoScience: Giants of the Infinitesimal July 31st, 2014

Analytical solutions from Malvern Instruments support University of Wisconsin-Milwaukee researchers in understanding environmental effects of nanomaterials July 30th, 2014

FEI Unveils New Solutions for Faster Time-to-Analysis in Metals Research July 30th, 2014

Patents/IP/Tech Transfer/Licensing

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

Rice's silicon oxide memories catch manufacturers' eye: Use of porous silicon oxide reduces forming voltage, improves manufacturability July 10th, 2014


Nature inspires a greener way to make colorful plastics July 30th, 2014

Iranian Scientists Use Waste Cotton Fibers to Produce Cellulose Nanoparticles July 29th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Researchers Use Various Zinc Oxide Nanostructures to Boost Efficiency of Water Purification Process July 13th, 2014


From Narrow to Broad July 30th, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

Making dreams come true: Making graphene from plastic? July 2nd, 2014

Shrinky Dinks close the gap for nanowires July 1st, 2014

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE