Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NREL Finds a Way to Give LEDs the Green Light

NREL's Solar Energy Research Facility is the site of experiments using lasers to probe the light-emitting properties of gallium indium phosphide alloys for making light-emitting diodes.  Credit: NREL file photo
NREL's Solar Energy Research Facility is the site of experiments using lasers to probe the light-emitting properties of gallium indium phosphide alloys for making light-emitting diodes. Credit: NREL file photo

Abstract:
Light bulbs that last 100 years and fill rooms with brilliant ambiance may become a reality sooner rather than later, thanks to a National Renewable Energy Laboratory discovery.

By Bill Scanlon

NREL Finds a Way to Give LEDs the Green Light

Golden, CO | Posted on April 6th, 2010

NREL scientists found a way to generate a tricky combination of green and red that may just prove to be the biggest boost for illumination since Edison's light bulb.

Green isn't just a symbol of environmentalism, it is a real color, and a desperately needed one for researchers looking for a way to light homes, streets and buildings at a fraction of today's costs.

LEDs — light-emitting diodes — are the promise of the future because unlike tungsten bulbs or compact fluorescent bulbs, they deliver most of their energy as light, rather than heat. An extra plus is that they don't contain dangerous mercury.

The era of LEDs is fast approaching. The U.S. Department of Energy expects to phase out tungsten bulbs in four years and compact-fluorescents in 10 years. That will leave LEDs with virtually 100 percent of the market.

To make an LED that appears white, researchers minimally need the colors red, green and blue. The white light from the sun is really all the colors of the rainbow. Without at least red, blue and green from the spectrum, no lighting device will be practical for home or office use.

Red proved easy to generate, and about 15 years ago, Japanese scientists found a way to generate blue, thus providing two of the key colors from the spectrum of white light.

But green has been elusive. In fact, the $10 LEDs that people can buy now are made to look white by aiming the blue light at a phosphor, which then emits green. It works OK, but the clunky process saps a big chunk of the efficiency from the light.

NREL Jumps into LED Research via Solar Cells

Along came NREL, a world leader in designing solar cells, but a neophyte in the lighting realm.

NREL scientist Angelo Mascarenhas, who holds patents in solar-cell technology, realized that an LED is just the reverse of a solar cell. One takes electricity and turns it into light; the other takes sunlight and turns it into electricity.

"We'd been working with solar cells for 30 years," Mascarenhas said. "Could we find some device where we could just reverse the process of making solar cells?"

Indeed, Mascarenhas found it. NREL had won major scientific awards with its inverted metamorphic solar cells, in which the cells are built by combining layers of different lattice sizes to optimally capture solar energy. In fact, an NREL-produced IMM cell set a world record by converting 40 percent of absorbed sunlight into electricity.

Along the way, "We had already developed some of the know-how to capture sunlight in this green spectral region," Mascarenhas said. They hadn't reached there, because solar cells don't need a green, but they had begun to understand the challenges of getting to a green.

Solving a Decade-Old Conundrum

For a decade, LED researchers had tried and failed to make a reliable efficient green light by putting indium into gallium nitride.

"All signs indicated an impasse," Mascarenhas said. "When you come across an impasse, you don't just bang your head against the wall. You end up breaking your head, not the wall.

"Instead, you move away from the wall, you find a different path."

He and his fellow solar-cell researchers had dealt with the same problem trying to build a solar cell with gallium indium nitride. The problem with trying to make a green on gallium nitride is that the indium phase separates and cracks. When the lattices created by molecular gases don't match up with the lattices of the layer below, "It can't grow well and the efficiency is very, very poor," Mascarenhas said.

NREL's solar cell experts found a way around that. They put in some extra layers that gradually bridge the gap between the mismatched lattices of the cell layers.

"The approach is to grow a different material with an in-between lattice," Mascarenhas said.

The researchers deposited layers that had lattice patterns of atoms close to, but not exactly matching, the layers below. The tiny gap in size was at the so-called "elastic limit" of the material — close enough that the lattices bonded to each other and impurities were deflected away.

Then, add a third layer, this one again at the precise "elastic limit" of the one below. After about seven microns of layering, the result is a solar cell with a firm bond and almost no impurities.

Why not try that same process, only in reverse, to make a reliable deep-green LED using gallium nitride and indium?

A Deep Green on the Very First Try

Astonishingly, once the concept was understood, Mascarenhas's team produced a radiant deep green on their very first try — without any money backing the effort.

The aim now is to provide a fourth color to make that white light even whiter.

NREL plans to use a slightly deeper red and a lemony green, which would then be combined with a blue and a very deep green made using the gallium nitride based technology.

In three years, NREL should have a bi-colored device that when teamed with blue and deep green can produce a sterling LED with a color-rendering index well over 90, Mascarenhas said.

"It will give you one of the finest color-rendering white lights" and the manufacturing costs shouldn't increase, he said.

"We have a patent on a device that will provide these two colors, as one unit, to industry," Mascarenhas said. "They will arrange them like the mosaic in a fly's eye — our units side by side with the blue and deep green combination, alternating in a pattern."

"From afar, it will look like white. You won't be able to see the individual colors of the mosaic structure."

"We have full confidence that this is achievable," Mascarenhas said.

"The technical things will be solved," he said. "This is practical science, not pie-in-the-sky science."

The resulting white light LED will be intelligent. "We'll be able to electronically control the hue of the lamp," he said. "We can vary the combination of intensities of these four colors on an electronic circuit. By slightly increasing the blue, we can make it more suitable for daylight. By turning down the blue and increasing the reddish yellow, we can make it softer, more suitable for night. We can smoothly control the hue throughout the day like nobody has imagined. "

And, by the way, the move toward all LEDs all the time will save some $120 billion in electricity between now and 2030, the Department of Energy forecasts. Not to mention tens of millions of tons of greenhouse gases.

"This is reality," Mascarenhas said. "This is going to happen."

Learn more about NREL's solid-state spectroscopy research here: www.nrel.gov/basic_sciences/technology.cfm/tech=5



####

For more information, please click here

Contacts:
National Renewable Energy Laboratory
1617 Cole Blvd.
Golden, CO 80401-3305

Main Phone Number
(303) 275-3000

Copyright © National Renewable Energy Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Display technology/LEDs/SS Lighting/OLEDs

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

CCNY physicists demonstrate photonic hypercrystals for control of light-matter interaction May 5th, 2017

Possible Futures

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Discoveries

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Announcements

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Patents/IP/Tech Transfer/Licensing

NREL’s Advanced Atomic Layer Deposition Enables Lithium-Ion Battery Technology: May 10th, 2017

Forge Nano 2017: 1st Quarter Media Update April 20th, 2017

Making Batteries From Waste Glass Bottles: UCR researchers are turning glass bottles into high performance lithium-ion batteries for electric vehicles and personal electronics April 19th, 2017

'Neuron-reading' nanowires could accelerate development of drugs for neurological diseases April 12th, 2017

Environment

Can crab shells provide a 'green' solution to malaria? Study shows how a mixture of chitin and silver nanoparticles inhibits growth of mosquito larvae May 12th, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Wood filter removes toxic dye from water April 21st, 2017

Making Batteries From Waste Glass Bottles: UCR researchers are turning glass bottles into high performance lithium-ion batteries for electric vehicles and personal electronics April 19th, 2017

Solar/Photovoltaic

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project