Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Smart orthopedic implants and self-fitting tissue scaffolding created by UMMS researchers

Abstract:
Nanoparticle-core polymer holds promise as an absorbable, weight-bearing replacement for traditional graft materials

Smart orthopedic implants and self-fitting tissue scaffolding created by UMMS researchers

Worcester, MA | Posted on April 6th, 2010

Orthopedic surgeons are often hamstrung by less-than-ideal grafting material when performing surgeries for complex bone injuries resulting from trauma, aging or cancer. Conventional synthetic bone grafts are typically made of stiff polymers or brittle ceramics, and cannot readily conform to the complex and irregular shapes that often result from injury; in addition, they often require metallic fixation devices that require open surgeries to insert and remove. Ideally, a scaffolding graft would conform to complex shapes of an injury site, provide weight-bearing support, require less invasive surgical delivery, and ultimately disappear when no longer needed.

Using a nanoparticle core, Jie Song, PhD, assistant professor of orthopedics & physical rehabilitation and cell biology at the University of Massachusetts Medical School, and postdoctoral fellow Jianwen Xu, have fashioned a new type of tissue and bone scaffolding polymer that addresses a number of these long-standing limitations. Research published in the online Early Edition of Proceedings of the National Academy of Sciences, describes the development of a class of heat-activated smart materials that combine tissue-like properties and strength that are clinically safe to deploy and able to integrate with surrounding tissue.

The key feature of the new polymer is its heat-activated malleability and shape memory. Using CT scans and MRI images of the injury site, Song envisions physicians creating a polymer mold of the scaffolding needed to stabilize a skeletal injury site, in the lab, prior to surgery. Heat activated at a safe 50C, the smart polymer could then be reshaped to a more compressed form suitable for insertion in the body through a small, minimally invasive incision. Once at the injury site, the idea is to then thermally re-activate the polymer to cause it to revert to its original, pre-molded shape in seconds, according to Song.

In addition to providing mechanical stabilization to the skeletal structure, because the biodegradable material is similar to those used in dissolvable sutures, it can be safely reabsorbed by the body as it breaks down over time. Therefore, there is no need for a second surgery to remove the implant. Additionally, as the scaffolding degrades, the polymer provides a porous structure that promotes tissue growth and integration. At the same time, the polymer has the ability to deliver therapeutics to accelerate new bone growth and integration.

"Strong and resorbable smart implants could have paradigm-changing impact on a number of surgical interventions that currently rely on the use of more invasive and less effective metallic cages, fixators and stents," said Song. "From spinal fusion to alleviate chronic lower back pain, vertebroplasty for treating vertebral fractures to angioplasty for widening narrowed or obstructed blood vessels, there are tremendous clinical applications for smart polymers."

Song and colleagues are testing the safety and efficacy of the material in animal models, which they hope will pave the way for future clinical trials.

####

About University of Massachusetts Medical School
The University of Massachusetts Medical School, one of the fastest growing academic health centers in the country, has built a reputation as a world-class research institution, consistently producing noteworthy advances in clinical and basic research. The Medical School attracts more than $240 million in research funding annually, 80 percent of which comes from federal funding sources. The mission of the Medical School is to advance the health and well-being of the people of the commonwealth and the world through pioneering education, research, public service and health care delivery with its clinical partner, UMass Memorial Health Care.

For more information, please click here

Contacts:
Jim Fessenden

508-856-2000

Copyright © Eurekalert

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Possible Futures

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Academic/Education

Lule University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Nanomedicine

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Announcements

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Nanobiotechnology

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Arrowhead Presents New Clinical Data Demonstrating a Sustained Host Response in Hepatitis B Patients Following RNAi Therapy Up to 5.0 log10 reduction in HBsAg observed; data presented at HEP DART 2017 December 6th, 2017

Going swimmingly: Biotemplates breakthrough paves way for cheaper nanobots: By using bacterial flagella as a template for silica, researchers have demonstrated an easier way to make propulsion systems for nanoscale swimming robots November 30th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project