Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Berkeley Researchers Light Up White OLEDs

Biwu Ma, a staff scientist with the Molecular Foundry, was part of a research team that found a new way to process white OLEDs for solid state lighting. (Photo by Roy Kaltschmidt, Berkeley Lab Public Affairs)
Biwu Ma, a staff scientist with the Molecular Foundry, was part of a research team that found a new way to process white OLEDs for solid state lighting. (Photo by Roy Kaltschmidt, Berkeley Lab Public Affairs)

Abstract:
Light-emitting diodes, which employ semiconductors to produce artificial light, could reduce electricity consumption and lighten the impact of greenhouse gas emissions. However, moving this technology beyond traffic signals and laser pointers to illumination for office buildings and homes—the single largest use of electricity—requires materials that emit bright, white light cheaply and efficiently. White light is the mix of all the colors, or wavelengths, in the visible spectrum.

Berkeley Researchers Light Up White OLEDs

Berkeley, CA | Posted on April 6th, 2010

Organic light-emitting diodes (OLEDs), based on organic and/or polymer semiconductor materials, are promising candidates for general lighting applications, as they can cover large-area displays or panels using low-cost processing techniques. Indeed, single-color OLED displays are already available commercially. A mix of red-, green- and blue-emitting materials can be used to generate white light, but these bands of color often interact with one another, degrading device performance and reducing color quality.

Using polymer nanoparticles to house light-emitting ‘inks', scientists at the Molecular Foundry, a U.S. Department of Energy nanoscience center located at Berkeley Lab, and the University of California, Berkeley, have made a thin film OLED using iridium-based guest molecules to emit various colors of visible light. The polymer nanoparticle surrounding a guest light-emitter serves as a ‘do not disturb' sign, isolating guest molecules from one another. Each guest can then emit light without pesky interactions with neighboring nanoparticles, resulting in white luminescence.

"This simple and bright approach to achieving nanoscale site isolation of phosphors opens a new door for facile processing of white OLEDs for solid state lighting," said Biwu Ma, a staff scientist with the Molecular Foundry's Organic Nanostructures Facility who contributed to this study. With this proof-of-concept device under their belts, Ma and his colleagues plan to vary the ratio of each color nanoparticle in the OLED to enhance efficiency and brightness. White light from OLEDs can be adjusted from cooler to warmer whites, making these materials easy to use in office or home environments. Buildings account for more than 40 percent of carbon emissions in the United States, so replacing even a fraction of conventional lighting with OLEDs could result in a significant reduction in electricity use.

A paper reporting this research titled, "Site isolation of emitters within cross-linked polymer nanoparticles for white electroluminescence," appears in the journal Nano Letters and is available in Nano Letters online. Co-authoring the paper with Ma, were Haifeng Gao, Daniel Poulsen and Jean Fréchet of Berkeley Lab's Materials Sciences Division, plus David Unruh, Xiaoyong Zhao and Jill Millstone with the UC Berkeley Chemistry Dpeartment.

Portions of this work at the Molecular Foundry were supported by DOE's Office of Science.

The Molecular Foundry is one of the five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for interdisciplinary research at the nanoscale. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories.

Additional Information

For more about Berkeley Lab's Molecular Foundry visit foundry.lbl.gov/

For more about the DOE NSRCs visit nano.energy.gov

####

About Berkeley Lab
Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California. Visit our website at www.lbl.gov.

For more information, please click here

Contacts:
Aditi Risbud
(510)486-4861

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Display technology/LEDs/SS Lighting/OLEDs

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

PEN Inc. Announces Strategy to Broaden Clarity Branded Products Business February 4th, 2016

QD Vision Named to the 2015 Global Cleantech 100 Under the Radar List: Quantum Dot Leader Recognized for Clean Technology Innovation January 26th, 2016

Thin films

IBS report electric transport across molybdenum disulfide grain boundaries: Scientific team from CINAP/IBS identifies previously undiscovered differences in grain boundaries January 28th, 2016

Weaving a new story for COFS and MOFs: First materials to be woven at the atomic and molecular levels created at Berkeley January 24th, 2016

Teijin to Participate in Nano Tech 2016 January 21st, 2016

Possible Futures

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Scientists create laser-activated superconductor February 8th, 2016

Nanoscale cavity strongly links quantum particles: Single photons can quickly modify individual electrons embedded in a semiconductor chip and vice versa February 8th, 2016

A fast solidification process makes material crackle February 8th, 2016

Academic/Education

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

COD Grad Begins Postdoctoral Fellow at Harvard University: Marsela Jorgolli's Passion for Physics Has Led to a Decade of Academic Research That Continues at Harvard University as a Postdoctoral Fellow February 2nd, 2016

Heriot-Watt's Institute of Photonics & Quantum Sciences uses the Deben Microtest 2 kN tensile stage to characterise ceramics and engineering plastics January 21st, 2016

Multiple uses for the JPK NanoWizard AFM system in the Smart Interfaces in Environmental Nanotechnology Group at the University of Illinois at Urbana-Champaign January 20th, 2016

Announcements

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Energy

Canadian physicists discover new properties of superconductivity February 8th, 2016

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

February 4th, 2016

Putting silicon 'sawdust' in a graphene cage boosts battery performance: Approach could remove major obstacles to increasing the capacity of lithium-ion batteries January 30th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic