Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Tiny Gold Particles Help Researchers Find Protein Impostor

Abstract:
University of Miami assistant professor in the College of Engineering, Na Li and her collaborators have developed a fast, economical and easy method to detect melamine in milk. Melamine is the compound found in contaminated pet food and in tainted dairy products from China in 2007 and 2008 respectively. The laced dairy products were responsible for sickening thousands of people, especially children. The situation caused recalls of Chinese dairy products all over the world.

Tiny Gold Particles Help Researchers Find Protein Impostor

Coral Gables, FL | Posted on April 3rd, 2010

Monitoring melamine-tainted products continues to be a worldwide concern. Melamine is an industrial substance commonly used in plastics and fertilizers. Since Melamine is high in nitrogen, when added to foods it can make the products appear higher in protein value during standard testing. However, when ingested, the chemical can cause serious health problems and in some cases death.

The new method is described in the study titled "Rapid Detection of Melamine in Whole Milk Mediated by Unmodified Gold Nanoparticles," published online this week by the journal Applied Physics Letters and available at: link.aip.org/link/?APL/96/133702

This study develops a facile and accurate approach towards detection of melamine utilizing gold nanoparticles and a dual color and precipitation test. The complete detection methodology is completed in less than 15 minutes,

"Current methods of melamine detection in milk are costly and time consuming," says Na Li, assistant professor in the Department of Mechanical and Aerospace Engineering, at the University of Miami and senior corresponding author of this study. "Our work represents a significant step towards the rapid detection of melamine, which addresses a critical global issue."

The researchers first step is to separate the casein-based milk component, which can interfere with melamine detection. Next, they add gold nanoparticles to the solution. The interaction between the gold nanoparticles and melamine causes a dramatic color change indicating the presence of melamine. When melamine is present, the color of the solution changes from red to blue within seconds and can be measured both by visual inspection and spectrophotometry. Cyanuric acid, which has a specific reaction with melamine, is introduced sequentially to increase specificity. If melamine is present, a precipitant is formed, which can also be assessed both visually and by spectrophotometry.

"This method provides a unique opportunity to use the highly sensitive detection properties of nanoparticles to prevent people from being harmed by melamine ingestion," says Dean Ho, assistant professor in the Departments of Biomedical and Mechanical Engineering, and at the Robert H. Lurie Comprehensive Cancer Center at Northwestern University and co-corresponding author of this study. "It's important to utilize nanoparticles that can be manufactured in high yield, which makes it possible to have a method that can be widely used."

In the future, the researchers hope to develop a commercial simple kit that can be used by the lay person, at home or in the field, to detect melamine contaminant in food.

"Our method provides not only an alternative method to the current lab based detection, but also the way for early screening of the milk, especially for field work and for developing countries," says Fang Wei, staff research associate in the Department of Mechanical and Aerospace Engineering, at the University of California, Los Angeles and first author of this study.

####

About University of Miami
The University of Miamiís mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of the diversity of our University family, we strive to develop future leaders of our nation and the world.

For more information, please click here

Contacts:
Marie Guma-Diaz

Copyright © University of Miami

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Announcements

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Food/Agriculture/Supplements

Research shows how DNA molecules cross nanopores: Study could inform biosensors, manufacturing, and more September 5th, 2017

Probiotics: Novel biosynthetic tool to develop metallic nanoparticles: This research article by Dr. Nida Akhtar et al has been published in Recent Patents on Drug Delivery & Formulation, Volume 11, Issue 1, 2017 July 20th, 2017

New technology could offer cheaper, faster food testing: Specialized droplets interact with bacteria and can be analyzed using a smartphone April 7th, 2017

Meta-lenses bring benchtop performance to small, hand-held spectrometer: Game-changing nanostructure-based lenses allow smaller devices, increased functionality February 9th, 2017

Safety-Nanoparticles/Risk management

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

NIST updates 'sweet' 1950s separation method to clean nanoparticles from organisms January 27th, 2017

Research partnerships

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

More 22 of 59,885 Print all In new window Leti to Present Update of CoolCube/3DVLSI Technologies Development at 2017 IEEE S3S: Future Developments and Tape-Out Vehicles to Be Presented during Oct. 17 Workshop October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project