Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanotechnologists at Penn and Columbia Reveal the Frictional Characteristics of Atomically Thin Sheets

Abstract:
A team of nanotechnology researchers from the University of Pennsylvania and Columbia University has used friction force microscopy to determine the nanoscale frictional characteristics of four atomically-thin materials, discovering a universal characteristic for these very different materials. Friction across these thin sheets increases as the number of atomic layers decreases, all the way down to one layer of atoms. This friction increase was surprising as there previously was no theory to predict this behavior.

Nanotechnologists at Penn and Columbia Reveal the Frictional Characteristics of Atomically Thin Sheets

Philadelphia, PA | Posted on April 2nd, 2010

The finding reveals a significant principle for these materials, which are widely used as solid lubricant films in critical engineering applications and are leading contenders for future nanoscale electronics.

Researchers found that friction progressively increased as the number of layers is reduced on all four materials, regardless of how different the materials may behave chemically, electronically or in bulk quantities. These measurements, supported by computer modeling, suggest that the trend arises from the fact that the thinner a material the more flexible it is, just as a single sheet of paper is much easier to bend than a thick piece of cardboard.

Robert Carpick, professor in the Department of Mechanical Engineering and Applied Mechanics at Penn, and James Hone, professor in the Department of Mechanical Engineering at Columbia, led the project collaboratively.

The team tested the nanotribological, or nano-scale frictional properties, of graphene, molybdenum disulfide (MoS2), hexagonal-BN (h-BN) and niobium diselenide (NbSe2) down to single atomic sheets. The team literally shaved off atomic-scale amounts of each material onto a silicon oxide substrate and compared their findings to the bulk counterparts. Each material exhibited the same basic frictional behavior despite having electronic properties that vary from metallic to semiconducting to insulating.

"We call this mechanism, which leads to higher friction on thinner sheets the ‘puckering effect,'" Carpick said. "Interatomic forces, like the van der Waals force, cause attraction between the atomic sheet and the nanoscale tip of the atomic force microscope which measures friction at the nanometer scale."

Because the sheet is so thin — in some samples only an atom thick — it deflects toward the tip, making a puckered shape and increasing the area of interaction between the tip and the sheet, which increases friction. When the tip starts to slide, the sheet deforms further as the deformed area is partially pulled along with the tip, rippling the front edge of the contact area. Thicker sheets cannot deflect as easily because they are much stiffer, so the increase in friction is less pronounced.

The researchers found that the increase in friction could be prevented if the atomic sheets were strongly bound to the substrate. If the materials were deposited onto the flat, high-energy surface of mica, a naturally occurring mineral, the effect goes away. Friction remains the same regardless of the number of layers because the sheets are strongly stuck down onto the mica, and no puckering can occur.

"Nanotechnology examines how materials behave differently as they shrink to the nanometer scale," Hone said. "On a fundamental level, it is exciting to find yet another property that fundamentally changes as a material gets smaller."

The results may also have practical implications for the design of nanomechanical devices that use graphene, which is one of the strongest materials known. It may also help researchers understand the macroscopic behavior of graphite, MoS2 and BN, which are used as common lubricants to reduce friction and wear in machines and devices.

The study, published in the current edition of the journal Science, was conducted collaboratively by Carpick and Qunyang Li of the Department of Mechanical Engineering in Penn's School of Engineering and Applied Science; Hone, Changgu Lee and William Kalb of the Department of Mechanical Engineering in the Fu Foundation School of Engineering and Applied Science at Columbia; Xin-Zhou Liu of Leiden University in the Netherlands; and Helmuth Berger of Ecole Polytechnique Fédérale de Lausanne in Switzerland.

Research was funded by the National Science Foundation through Penn's Laboratory for Research into the Structure of Matter, Columbia's Nanoscale Science and Engineering Center, the NSF's Directorate for Engineering, the Defense Advanced Research Projects Agency, the Air Force Office of Scientific Research and the New York State Office of Science, Technology and Academic Research.

####

About University of Pennsylvania
Today Penn is home to a diverse undergraduate student body of over 10,000, hailing from every state in the union and all around the globe. Penn consistently ranks among the top 10 universities in the country. Another 10,000 students are enrolled in Penn's 12 graduate and professional schools, which are national leaders in their fields. The Wharton School is consistently one of the nation's top three business schools. The School of Nursing is one of the best in the U.S. The School of Arts and Sciences, Graduate School of Education, Law School, School of Medicine, School of Veterinary Medicine, and Annenberg School for Communication all rank among the top schools in their fields.

For more information, please click here

Contacts:
Media contact
Jordan Reese
215-573-6604

Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Govt.-Legislation/Regulation/Funding/Policy

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

NNCO Announces an Interactive Webinar: Progress Review on the Coordinated Implementation of the National Nanotechnology Initiative 2011 Environmental, Health, and Safety Research Strategy July 23rd, 2014

Possible Futures

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

Academic/Education

Haydale Announces Collaboration Agreement with Swansea University’s Welsh Centre for Printing and Coatings (WCPC) July 12th, 2014

STFC takes delivery of the 100th Hitachi Tabletop SEM in the UK July 3rd, 2014

Innovation Management and the Emergence of the Nanobiotechnology Industry July 1st, 2014

Albany NanoCollege Faculty Member Selected as Editor-in-Chief of the Prestigious Journal of Electronic Materials July 1st, 2014

Molecular Machines

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

University of Illinois researchers demonstrate novel, tunable nanoantennas July 14th, 2014

Ribosome Research in Atomic Detail Offers Potential Insights into Cancer, Anemia, Alzheimer’s: New movement during decoding occurs in humans, not in bacteria July 3rd, 2014

Nanotubes/Buckyballs

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

University of Houston researchers create new method to draw molecules from live cells: Technique using magnetic nanomaterials offers promise for diagnosis, gene therapy July 17th, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Researchers discover boron 'buckyball' July 14th, 2014

Announcements

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Iranian Scientists Produce Reusable Nanoadsorbent to Detect Sulfamide in Chicken July 27th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Tools

Malvern Instruments completes acquisition of MicroCal and announces purchase of Archimedes product from Affinity Biosensors July 25th, 2014

Hysitron is Awarded TWO R&D 100 Awards for Highly Innovative Technology Developments in the Areas of Extreme Environments and Biological Mechanical Property Testing July 23rd, 2014

The Hiden EQP Plasma Diagnostic with on-board MCA July 22nd, 2014

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Research partnerships

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE