Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > A step toward lighter batteries

Doctoral student Yi-Chun Lu holds an experimental lithium-air battery that was used for testing at MIT.  Photo: Patrick Gillooly
Doctoral student Yi-Chun Lu holds an experimental lithium-air battery that was used for testing at MIT. Photo: Patrick Gillooly

Abstract:
Research shows metal catalysts play important role in improving the efficiency of lithium-oxygen batteries.

By David L. Chandler, MIT News Office

A step toward lighter batteries

Cambridge, MA | Posted on April 2nd, 2010

Lightweight batteries that can deliver lots of energy are crucial for a variety of applications — for example, improving the range of electric cars. For that reason, even modest increases in a battery's energy-density rating — a measure of the amount of energy that can be delivered for a given weight — are important advances. Now a team of researchers at MIT has made significant progress on a technology that could lead to batteries with up to three times the energy density of any battery that currently exists.

Yang Shao-Horn, an MIT associate professor of mechanical engineering and materials science and engineering, says that many groups have been pursuing work on lithium-air batteries, a technology that has great potential for achieving great gains in energy density. But there has been a lack of understanding of what kinds of electrode materials could promote the electrochemical reactions that take place in these batteries.

Lithium-oxygen (also known as lithium-air) batteries are similar in principle to the lithium-ion batteries that now dominate the field of portable electronics and are a leading contender for electric vehicles. But because lithium-air batteries use lightweight porous carbon electrodes and oxygen drawn from a flow of air to take the place of heavy solid compounds used in lithium-ion batteries, the batteries themselves can be much lighter. That's why leading companies, including IBM and General Motors, have committed to major research initiatives on lithium-air technology.

In a paper published this week in the journal Electrochemical and Solid-State Letters, Shao-Horn, along with some of her students and visiting professor Hubert Gasteiger, reported on a study showing that electrodes with gold or platinum as a catalyst show a much higher level of activity and thus a higher efficiency than simple carbon electrodes in these batteries. In addition, this new work sets the stage for further research that could lead to even better electrode materials, perhaps alloys of gold and platinum or other metals, or metallic oxides, and to less expensive alternatives.

Doctoral student Yi-Chun Lu, lead author of the paper, explains that this team has developed a method for analyzing the activity of different catalysts in the batteries, and now they can build on this research to study a variety of possible materials. "We'll look at different materials, and look at the trends," she says. "Such research could allow us to identify the physical parameters that govern the catalyst activity. Ultimately, we will be able to predict the catalyst behaviors. "

One issue to be dealt with in developing a battery system that could be widely commercialized is safety. Lithium in metallic form, which is used in lithium-air batteries, is highly reactive in the presence of even minuscule amounts of water. This is not an issue in current lithium-ion batteries because carbon-based materials are used for the negative electrode. Shao-Horn says the same battery principle can be applied without the need to use metallic lithium; graphite or some other more stable negative electrode materials could be used instead, she says, leading to a safer system.

A number of issues must be addressed before lithium-air batteries can become a practical commercial product, she says. The biggest issue is developing a system that keeps its power through a sufficient number of charging and discharging cycles for it to be useful in vehicles or electronic devices.

Researchers also need to look into details of the chemistry of the charging and discharging processes, to see what compounds are produced and where, and how they react with other compounds in the system. "We're at the very beginning" of understanding exactly how these reactions occur, Shao-Horn says.

Gholam-Abbas Nazri, a researcher at the GM Research & Development Center in Michigan, calls this research "interesting and important," and says this addresses a significant bottleneck in the development of this technology: the need find an efficient catalyst. This work is "in the right direction for further understanding of the role of catalysts," and it "may significantly contribute to the further understanding and future development of lithium-air systems," he says.

While some companies working on lithium-air batteries have said they see it as a 10-year development program, Shao-Horn says it is too early to predict how long it may take to reach commercialization. "It's a very promising area, but there are many science and engineering challenges to be overcome," she says. "If it truly demonstrates two to three times the energy density" of today's lithium-ion batteries, she says, the likely first applications will be in portable electronics such as computers and cell phones, which are high-value items, and only later would be applied to vehicles once the costs are reduced.

####

About MIT
The mission of MIT is to advance knowledge and educate students in science, technology and other areas of scholarship that will best serve the nation and the world in the 21st century — whether the focus is cancer, energy, economics or literature.

For more information, please click here

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Chemistry

Lonely atoms, happily reunited July 29th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

New reaction for the synthesis of nanostructures July 21st, 2016

Pushing a single-molecule switch: An international team of researchers from Donostia International Physics Center, Fritz-Haber Institute of the Max Planck Society, University of Liverpool, and the Polish Academy of Sciences has shown a new way to operate a single-molecule switch July 19th, 2016

Possible Futures

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

Academic/Education

Thomas Swan and NGI announce unique partnership July 28th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

News from Quorum: The College of New Jersey use the Quorum Cryo-SEM preparation system in a project to study ice crystals in high altitude clouds July 19th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

Announcements

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Energy

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

Automotive/Transportation

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Researchers improve catalyst efficiency for clean industries: Method reduces use of expensive platinum July 8th, 2016

Artificial synapse rivals biological ones in energy consumption June 21st, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Synthesized microporous 3-D graphene-like carbons: IBS research team create carbon synthesis using zeolites as a template July 1st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic