Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A step toward lighter batteries

Doctoral student Yi-Chun Lu holds an experimental lithium-air battery that was used for testing at MIT.  Photo: Patrick Gillooly
Doctoral student Yi-Chun Lu holds an experimental lithium-air battery that was used for testing at MIT. Photo: Patrick Gillooly

Abstract:
Research shows metal catalysts play important role in improving the efficiency of lithium-oxygen batteries.

By David L. Chandler, MIT News Office

A step toward lighter batteries

Cambridge, MA | Posted on April 2nd, 2010

Lightweight batteries that can deliver lots of energy are crucial for a variety of applications — for example, improving the range of electric cars. For that reason, even modest increases in a battery's energy-density rating — a measure of the amount of energy that can be delivered for a given weight — are important advances. Now a team of researchers at MIT has made significant progress on a technology that could lead to batteries with up to three times the energy density of any battery that currently exists.

Yang Shao-Horn, an MIT associate professor of mechanical engineering and materials science and engineering, says that many groups have been pursuing work on lithium-air batteries, a technology that has great potential for achieving great gains in energy density. But there has been a lack of understanding of what kinds of electrode materials could promote the electrochemical reactions that take place in these batteries.

Lithium-oxygen (also known as lithium-air) batteries are similar in principle to the lithium-ion batteries that now dominate the field of portable electronics and are a leading contender for electric vehicles. But because lithium-air batteries use lightweight porous carbon electrodes and oxygen drawn from a flow of air to take the place of heavy solid compounds used in lithium-ion batteries, the batteries themselves can be much lighter. That's why leading companies, including IBM and General Motors, have committed to major research initiatives on lithium-air technology.

In a paper published this week in the journal Electrochemical and Solid-State Letters, Shao-Horn, along with some of her students and visiting professor Hubert Gasteiger, reported on a study showing that electrodes with gold or platinum as a catalyst show a much higher level of activity and thus a higher efficiency than simple carbon electrodes in these batteries. In addition, this new work sets the stage for further research that could lead to even better electrode materials, perhaps alloys of gold and platinum or other metals, or metallic oxides, and to less expensive alternatives.

Doctoral student Yi-Chun Lu, lead author of the paper, explains that this team has developed a method for analyzing the activity of different catalysts in the batteries, and now they can build on this research to study a variety of possible materials. "We'll look at different materials, and look at the trends," she says. "Such research could allow us to identify the physical parameters that govern the catalyst activity. Ultimately, we will be able to predict the catalyst behaviors. "

One issue to be dealt with in developing a battery system that could be widely commercialized is safety. Lithium in metallic form, which is used in lithium-air batteries, is highly reactive in the presence of even minuscule amounts of water. This is not an issue in current lithium-ion batteries because carbon-based materials are used for the negative electrode. Shao-Horn says the same battery principle can be applied without the need to use metallic lithium; graphite or some other more stable negative electrode materials could be used instead, she says, leading to a safer system.

A number of issues must be addressed before lithium-air batteries can become a practical commercial product, she says. The biggest issue is developing a system that keeps its power through a sufficient number of charging and discharging cycles for it to be useful in vehicles or electronic devices.

Researchers also need to look into details of the chemistry of the charging and discharging processes, to see what compounds are produced and where, and how they react with other compounds in the system. "We're at the very beginning" of understanding exactly how these reactions occur, Shao-Horn says.

Gholam-Abbas Nazri, a researcher at the GM Research & Development Center in Michigan, calls this research "interesting and important," and says this addresses a significant bottleneck in the development of this technology: the need find an efficient catalyst. This work is "in the right direction for further understanding of the role of catalysts," and it "may significantly contribute to the further understanding and future development of lithium-air systems," he says.

While some companies working on lithium-air batteries have said they see it as a 10-year development program, Shao-Horn says it is too early to predict how long it may take to reach commercialization. "It's a very promising area, but there are many science and engineering challenges to be overcome," she says. "If it truly demonstrates two to three times the energy density" of today's lithium-ion batteries, she says, the likely first applications will be in portable electronics such as computers and cell phones, which are high-value items, and only later would be applied to vehicles once the costs are reduced.

####

About MIT
The mission of MIT is to advance knowledge and educate students in science, technology and other areas of scholarship that will best serve the nation and the world in the 21st century — whether the focus is cancer, energy, economics or literature.

For more information, please click here

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Chemistry

Production of Toxic Ion Nanosorbents with High Sorption Capacity in Iran August 17th, 2014

Scientists fold RNA origami from a single strand: RNA origami is a new method for organizing molecules on the nanoscale. Using just a single strand of RNA, this technique can produce many complicated shapes. August 14th, 2014

Could hemp nanosheets topple graphene for making the ideal supercapacitor? August 12th, 2014

Iranians Find Novel Method for Processing Highly Pure Ceramic Nanoparticles August 12th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Academic/Education

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

SEMATECH and Newly Merged SUNY CNSE/SUNYIT Launch New Patterning Center to Further Advance Materials Development: Center to Provide Access to Critical Tools that Support Semiconductor Technology Node Development August 7th, 2014

Oxford Instruments Asylum Research and the Center for Nanoscale Systems at Harvard University Present a Workshop on AFM Nanomechanical and Nanoelectrical Characterization, Aug. 21-22 August 6th, 2014

Announcements

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Energy

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

Aspen Aerogels, Inc. to Present at Barclays CEO Energy-Power Conference August 27th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Chemical reaction yields "tapes" of porphin molecules: Flexible tapes from the nanoworld August 13th, 2014

Automotive/Transportation

Fonon Announces 3D Metal Sintering Technology: Emerging Additive Nano Powder Manufacturing Technology August 28th, 2014

SouthWest NanoTechnologies CEO Dave Arthur to Discuss “Carbon Nanotubes and Automotive Applications” at The Automotive Composites Conference and Expo 2014 (ACCE2014) August 28th, 2014

Creation of a Highly Efficient Technique to Develop Low-Friction Materials Which Are Drawing Attention in Association with Energy Issues August 26th, 2014

New Method Provides Nanoscale Details of Electrochemical Reactions in Electric Vehicle Battery Materials August 4th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Picosun joins forces with IMEC for novel, industrial ALD applications August 25th, 2014

Graphene may be key to leap in supercapacitor performance August 20th, 2014

Could hemp nanosheets topple graphene for making the ideal supercapacitor? August 12th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE