Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > A manufacturing renaissance for America?

Pills are fed through a sorter in a pharmaceutical manufacturing facility. New manufacturing methods in industries such as drug production may be a key to reviving the United States economy.
Pills are fed through a sorter in a pharmaceutical manufacturing facility. New manufacturing methods in industries such as drug production may be a key to reviving the United States economy.

Abstract:
At an MIT forum, experts examine new ways to pursue a good old idea: making things

By Peter Dizikes, MIT News Office

A manufacturing renaissance for America?

Cambridge, MA | Posted on April 1st, 2010

Over the last few decades, the sector of the U.S. economy devoted to manufacturing has lost ground to the services sector. The number of U.S. manufacturing jobs has declined from nearly 20 million in 1979 to about 12 million today. Yet as the recent global recession suggests, services can propel the economy only so far. There is no substitute for making tangible, useful products.

But what form will new kinds of manufacturing take? At an MIT roundtable discussion on Monday titled "The Future of Manufacturing — Advanced Technologies," more than a dozen of the Institute's faculty shared converging ideas about how to reinvigorate America's goods-producing businesses. The roundtable followed a broader campus forum hosted by MIT President Susan Hockfield on March 1, in which faculty members, some of whom also participated in Monday's discussion, offered ideas about how to strengthen America innovation and thus its overall economy. These meetings are part of a larger effort by MIT to contribute the Institute's expertise in emerging technologies and innovation policies to the national effort to revitalize the American economy.

Monday's discussion cast specific issues of manufacturing in the light of broad economic considerations. "To recover from the current economic downturn, it has been estimated that we need to create on the order of 17 million to 20 million new jobs in the coming decade," noted Hockfield in her opening remarks at the event, which was co-sponsored by the Council on Competitiveness, an industry group. "And it's very hard to imagine where those jobs are going to come from unless we seriously get busy reinventing manufacturing." That question should be of great concern to scientists and engineers — 64 percent of whom, Hockfield noted, are employed in the manufacturing sector.

Hockfield also directly addressed the commonly held notion that the United States cannot compete in manufacturing against low-wage countries, citing the success of Japan and Germany, both of which feature trade surpluses and high wages. "I take this as positive proof that building a strong advanced manufacturing sector is not impossible, but very much worth pursuing," Hockfield said. In addition to new business practices and continued strength in education, Hockfield added, "A key hope for progress lies in tapping unprecedented new manufacturing technologies."

Suzanne Berger, a professor of political science and author of How We Compete: What Companies Around the World Are Doing to Make It in Today's Global Economy, asserted that Americans need to be disabused of the notion that manufacturing is "a ‘sunset sector' that should be allowed to sink over the horizon." Increased productivity per worker means the United States still produces 22 percent of the world's goods, Berger noted, a figure that has been roughly constant for 30 years, and which makes the United States the world's top manufacturer. Yet the country "has failed to exploit new opportunities for exporting U.S. goods," she said. "The big problem is not that we can't compete with China on low wages," Berger added, but that the United States has "not developed enough kinds of manufacturing that could generate both high profits and also good jobs."

Material benefits

The roundtable discussion was organized into two consecutive panels, the first of which focused on innovation in materials science. Gerbrand Ceder, a professor in MIT's Department of Materials Science and Engineering (DMSE), outlined how a "Materials Genome Project" can catalogue the properties of known materials and allow designers to better model potential devices, thus accelerating product development. "Clearly there are some things that would be useful to apply in many types of manufacturing," Ceder noted.

Christine Ortiz, an associate professor also in DMSE, described her research group's efforts to study the nano-scale properties of "high-strength, lightweight, penetration-resistant" biological materials. Those properties could then be transferred to synthetic materials, expanding the range of products that can be manufactured through methods such as 3-D printing.

Charles Fine, a professor at the MIT Sloan School of Management, and Richard Roth, of the Engineering Systems Division, both discussed lightweight automobiles as an alternative to traditional vehicles and an area where the United State could re-establish a competitive advantage in manufacturing. "If we take on the hard challenges and succeed, it's not so easy to copy," Fine said. And as Roth noted, "Batteries are extraordinarily expensive," so new materials research leading to lighter cars would lower those costs by reducing vehicle battery size. In turn, that could make electric automobiles more affordable for consumers and a more appealing investment for manufacturers.

But the actual techniques of manufacturing are what most need to be reinvented, asserted Martin Culpepper, an associate professor in MIT's Department of Mechanical Engineering. Over the last 150 years, suggested Culpepper, heavy industry has refined large-scale production techniques effectively, and developed myriad tools suited to its needs. But businesses today must invent equally useful nanotechnology-based manufacturing techniques, he believes, allowing firms to better manipulate matter at the smallest scales in order to produce everything from new industrial materials to cutting-edge medicine.

"We don't have the tools and technologies right now to do a lot of nano-manufacturing in a really practical way," said Culpepper. Moreover, he believes, researchers today who want to commercialize lab discoveries underestimate the difficulties of "integrating the science and the [manufacturing] process … this is not a trivial thing."

Culpepper's own research group aims to create those kinds of small-scale manufacturing tools. Working with one bioscience research institute, he noted, they have been able to roll back the size boundaries of nano-scale DNA arrays, which could make drug production more efficient.

Still, these advances are also restricted, Culpepper said, by the limited number of people with a thorough knowledge of nano-scale manufacturing. "In my lab, it's like an apprenticeship," Culpepper said. "It takes a long time to learn how to do this stuff properly." Universities and their partners, he stated, need to help rectify this problem: "We would like to have more support for training."

Production values

The second panel discussion centered on technology advances for transforming production. Rodney Brooks of MIT's Computer Science and Artificial Intelligence Laboratory suggested it is increasingly hard for industry to find places that provide low-cost labor, meaning that U.S. firms should instead seek low-cost manufacturing technologies. Specifically, manufacturers who use robotics, Brooks said, have gotten "stuck in what was developed in the 1960s. There's very little integration of sensors and computation with these robots." As a result of this adherence to inflexible technology, Brooks added, "the integration cost of using robots in industry is 5 to 10 times the capital cost of the robots, and only makes sense if you do the same thing again and again."

Bernhardt Trout, a chemical engineering professor and director of the Novartis-MIT Center for Continuous Manufacturing, asserted that the traditional, small-molecule part of the pharmaceuticals industry — firms that make over-the-counter medicines, for instance — invest a "shockingly low" portion of their capital in further product development, instead reaping high profits from existing products, while basic manufacturing technologies have not changed for decades. Trout suggested a streamlined drug-approval process would help motivate industry innovation, but equally claimed the "financialization" of the industry has hurt product development; firms see themselves as "marketing and supply companies." Advances in academic research, Trout said, are thus especially critical if the industry is to move forward.

The rapid spread of manufacturing know-how has had double-edged effects, observed Sanjay Sarma, an associate professor of mechanical engineering. Profitable industries can now be located around the world, while multinational firms build global supply chains to move products in bulk. "The thing that really hurts manufacturing in the U.S. is the flattening effect that comes from economies of scale," Sarma said. In response, Sarma suggested domestic manufacturing can become lucrative with the use of "small-lot logistics," technologies that reduce production and transportation costs and can make many businesses, such as apparel firms, more viable.

However, making new manufacturing environmentally sustainable will be a large challenge, said Timothy Gutowski, also a professor of mechanical engineering. "Here's the problem: Underpriced ecosystem services provide a competitive advantage," said Gutowski, meaning that companies who extract natural resources cheaply still have edges in manufacturing. Cooperation between industry and government — and between governments — will be necessary to put new manufacturing on a sound environmental foundation.

Charles Cooney, a professor of chemical engineering moderating the second panel, concluded that three things are important to improving U.S. manufacturing: an understanding of systems thinking, which can help create new, possibly local and regional forms of manufacture and distribution; a recognition that sound public policy will be a necessary part of new development; and a multi-agency approach to science and technology funding, to improve the odds that more forms of research will move from the lab to the factory.

####

About MIT
The mission of MIT is to advance knowledge and educate students in science, technology and other areas of scholarship that will best serve the nation and the world in the 21st century — whether the focus is cancer, energy, economics or literature.

For more information, please click here

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Jobs

SUNY Poly Welcomes DPS as the Global Engineering Firm Opens Its U.S. Advanced Technology Group Headquarters at Cutting-Edge ZEN Building November 20th, 2015

SUNY Poly CNSE Announces Milestone as M+W Group Opens U.S. Headquarters at Albany Nanotech Complex and Research Alliance Begins $105M Solar Power Initiative October 20th, 2015

Global Engineering Firm DPS to Establish U.S. Advanced Technology Group Headquarters at SUNY Poly CNSE and Create 56 New Jobs Under STARTUP-NY Initiative October 6th, 2015

SUNY Poly Announces Joint Development Agreement with INFICON to Establish Cutting Edge R&D Partnership Supporting New York State’s Rapidly Expanding Nanoelectronics Industry September 23rd, 2015

Academic/Education

Graphene: Progress, not quantum leaps May 23rd, 2016

Smithsonian Science Education Center and National Space Society Team Up for Next-Generation Space Education Program "Enterprise In Space" May 11th, 2016

The University of Colorado Boulder, USA, combines Raman spectroscopy and nanoindentation for improved materials characterisation May 9th, 2016

Albertan Science Lab Opens in India May 7th, 2016

Nanomedicine

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

Materials/Metamaterials

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Announcements

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Tools

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

More light on cancer: Scientists created nanoparticles to highlight cancer cells May 21st, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Carnegie Mellon develops bio-mimicry method for preparing and labeling stem cells: Method allows researchers to prepare mesenchymal stem cells and monitor them using MRI May 19th, 2016

Industrial

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Solliance realizes first up-scaled Perovskite based PV modules with 10% efficiency: Holst Centre, imec and ECN pave the road to upscaling Perovskite PV modules May 10th, 2016

First single-enzyme method to produce quantum dots revealed: Biological manufacturing process, pioneered by three Lehigh University engineers, produces equivalent quantum dots to those made chemically--but in a much greener, cheaper way May 9th, 2016

Visualizing the Lithiation of a Nanosized Iron-Oxide Material in Real Time: Electron microscopy technique reveals the reaction pathways that emerge as lithium ions are added to magnetite nanoparticles May 9th, 2016

Events/Classes

Novel gene therapy shows potential for lung repair in asthma May 18th, 2016

Arrowhead Pharmaceuticals' Preclinical Candidate ARC-LPA Achieves 98% Knockdown and Long Duration of Effect after Subcutaneous Administration May 10th, 2016

Nanometrics Announces Upcoming Investor Events May 10th, 2016

Oxford Instruments Asylum Research and McGill University Announce the McGill AFM Summer School and Workshop, May 12-13, 2016 May 4th, 2016

Nanobiotechnology

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic