Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NIST Racetrack Ion Trap is a Contender in Quantum Computing Quest

Photograph of NIST racetrack ion trap under development as possible hardware for a future quantum computer. The 150 zones for storing, transporting and probing ions (electrically charged atoms) are located in the center ring structure and the six channels radiating out from its edges. Credit: J. Amini/NIST
Photograph of NIST racetrack ion trap under development as possible hardware for a future quantum computer. The 150 zones for storing, transporting and probing ions (electrically charged atoms) are located in the center ring structure and the six channels radiating out from its edges. Credit: J. Amini/NIST

Abstract:
Physicists at the National Institute of Standards and Technology (NIST) have built and tested a device for trapping electrically charged atoms (ions) that potentially could process dozens of ions at once with the most versatile control of any trap demonstrated to date. The novel design is a first attempt to systematically scale up from traps that hold a few ions in a few locations to large trap arrays that can process many ions simultaneously, with the ultimate goal of building a practical quantum computer.

NIST Racetrack Ion Trap is a Contender in Quantum Computing Quest

Gaithersburg, MD | Posted on March 31st, 2010

If they can be built, quantum computers would rely on the curious rules of quantum mechanics to solve certain currently intractable problems, such as breaking today's most widely used data encryption codes. The same NIST research group has previously demonstrated various components and operations of a potential quantum computer using ions as quantum bits (qubits). The trap structure is only one component, analogous to the wiring in today's computers. Lasers are also needed to control and use the quantum data, as transistors do for classical bits today.

Made of a quartz wafer coated with gold in an oval shape roughly 2 by 4 millimeters, NIST's "racetrack" ion trap features 150 work zones where qubits—ions encoding 1s and 0s in their "spins"—could be stored and transported using electric fields and manipulated with laser beams for information processing. The trap theoretically could be scaled up to a much larger number of zones and mass fabricated in a variety of materials. Preliminary testing of the trap, including loading of 10 magnesium ions at once and transport of an ion through a junction between channels, is described in a new paper.*

Geometry is a key feature of the new trap design. This is the first demonstration of ion transport through a junction in a trap where all electrodes are located on one flat surface, a more scalable design than the multilayer ion traps originally developed. The various electrodes are used to position and move the ions. At least three adjacent electrodes are needed to hold an ion in a dedicated energy "well." This well and the ion can then be moved around to different locations by applying voltages to several other electrodes. The modular design would allow the addition of extra rings, which could significantly increase capabilities, according to Jason Amini, who designed the trap while a NIST postdoctoral researcher and is now at the Georgia Tech Quantum Institute in Atlanta.

"The trap design demonstrates the use of a basic component library that can be quickly assembled to form structures optimized for a particular experiment," Amini says. "We can imagine rapid development of traps tailored to individual experiments."

NIST scientists are continuing development of the racetrack ion trap as well as other designs. The new work was funded in part by the Intelligence Advanced Research Projects Activity and the Office of Naval Research. Four of the 10 authors of the new paper were postdoctoral or guest researchers at NIST at the time of the research and are currently affiliated with the Georgia Tech Quantum Institute, Atlanta, Ga.; Council for Scientific and Industrial Research, Pretoria, South Africa; Centre for Quantum Technologies, National University of Singapore; and Institut Neel-CNRS, Grenoble, France.

* J.M. Amini, H. Uys, J.H. Wesenberg, S. Seidelin, J. Britton, J.J. Bollinger, D. Leibfried, C. Ospelkaus, A.P. VanDevender and D.J. Wineland. Toward scalable ion traps for quantum information processing. New Journal of Physics. March 16, 2010.

####

About NIST
From automated teller machines and atomic clocks to mammograms and semiconductors, innumerable products and services rely in some way on technology, measurement, and standards provided by the National Institute of Standards and Technology.

Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Media Contact:
Laura Ost

(303) 497-4880

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Possible Futures

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Quantum Computing

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Harris & Harris Group Issues Its Financial Statements as of December 31, 2016, Posts Its Annual Shareholder Letter, And Will Host a Conference Call for Shareholders on Friday, March 17, 2017 March 15th, 2017

Sorting machine for atoms:Researchers at the University of Bonn clear a further hurdle on the path to creating quantum computers February 10th, 2017

First ever blueprint unveiled to construct a large scale quantum computer February 3rd, 2017

Nanoelectronics

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Racyics Launches ‘makeChip’ Design Service Platform for GLOBALFOUNDRIES’ 22FDX® Technology: Racyics will provide IP and design services as a part of the foundry’s FDXcelerator™ Partner Program May 11th, 2017

Researchers “iron out” graphene’s wrinkles: New technique produces highly conductive graphene wafers April 3rd, 2017

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Announcements

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Quantum nanoscience

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Quantum simulation technique yields topological soliton state in SSH model January 3rd, 2017

Diamonds are technologists' best friends: Researchers from the Lomonosov Moscow State University have grown needle- and thread-like diamonds and studied their useful properties December 30th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project