Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > NIST Racetrack Ion Trap is a Contender in Quantum Computing Quest

Photograph of NIST racetrack ion trap under development as possible hardware for a future quantum computer. The 150 zones for storing, transporting and probing ions (electrically charged atoms) are located in the center ring structure and the six channels radiating out from its edges. Credit: J. Amini/NIST
Photograph of NIST racetrack ion trap under development as possible hardware for a future quantum computer. The 150 zones for storing, transporting and probing ions (electrically charged atoms) are located in the center ring structure and the six channels radiating out from its edges. Credit: J. Amini/NIST

Abstract:
Physicists at the National Institute of Standards and Technology (NIST) have built and tested a device for trapping electrically charged atoms (ions) that potentially could process dozens of ions at once with the most versatile control of any trap demonstrated to date. The novel design is a first attempt to systematically scale up from traps that hold a few ions in a few locations to large trap arrays that can process many ions simultaneously, with the ultimate goal of building a practical quantum computer.

NIST Racetrack Ion Trap is a Contender in Quantum Computing Quest

Gaithersburg, MD | Posted on March 31st, 2010

If they can be built, quantum computers would rely on the curious rules of quantum mechanics to solve certain currently intractable problems, such as breaking today's most widely used data encryption codes. The same NIST research group has previously demonstrated various components and operations of a potential quantum computer using ions as quantum bits (qubits). The trap structure is only one component, analogous to the wiring in today's computers. Lasers are also needed to control and use the quantum data, as transistors do for classical bits today.

Made of a quartz wafer coated with gold in an oval shape roughly 2 by 4 millimeters, NIST's "racetrack" ion trap features 150 work zones where qubits—ions encoding 1s and 0s in their "spins"—could be stored and transported using electric fields and manipulated with laser beams for information processing. The trap theoretically could be scaled up to a much larger number of zones and mass fabricated in a variety of materials. Preliminary testing of the trap, including loading of 10 magnesium ions at once and transport of an ion through a junction between channels, is described in a new paper.*

Geometry is a key feature of the new trap design. This is the first demonstration of ion transport through a junction in a trap where all electrodes are located on one flat surface, a more scalable design than the multilayer ion traps originally developed. The various electrodes are used to position and move the ions. At least three adjacent electrodes are needed to hold an ion in a dedicated energy "well." This well and the ion can then be moved around to different locations by applying voltages to several other electrodes. The modular design would allow the addition of extra rings, which could significantly increase capabilities, according to Jason Amini, who designed the trap while a NIST postdoctoral researcher and is now at the Georgia Tech Quantum Institute in Atlanta.

"The trap design demonstrates the use of a basic component library that can be quickly assembled to form structures optimized for a particular experiment," Amini says. "We can imagine rapid development of traps tailored to individual experiments."

NIST scientists are continuing development of the racetrack ion trap as well as other designs. The new work was funded in part by the Intelligence Advanced Research Projects Activity and the Office of Naval Research. Four of the 10 authors of the new paper were postdoctoral or guest researchers at NIST at the time of the research and are currently affiliated with the Georgia Tech Quantum Institute, Atlanta, Ga.; Council for Scientific and Industrial Research, Pretoria, South Africa; Centre for Quantum Technologies, National University of Singapore; and Institut Neel-CNRS, Grenoble, France.

* J.M. Amini, H. Uys, J.H. Wesenberg, S. Seidelin, J. Britton, J.J. Bollinger, D. Leibfried, C. Ospelkaus, A.P. VanDevender and D.J. Wineland. Toward scalable ion traps for quantum information processing. New Journal of Physics. March 16, 2010.

####

About NIST
From automated teller machines and atomic clocks to mammograms and semiconductors, innumerable products and services rely in some way on technology, measurement, and standards provided by the National Institute of Standards and Technology.

Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Media Contact:
Laura Ost

(303) 497-4880

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New non-invasive method can detect Alzheimer's disease early: MRI probe technology shows brain toxins in living animals for first time December 22nd, 2014

Piezoelectricity in a 2-D semiconductor: Berkeley Lab researchers discovery of piezoelectricty in molybdenum disulfide holds promise for future MEMS December 22nd, 2014

Quantum physics just got less complicated December 22nd, 2014

Enzyme Biosensor Used for Rapid Measurement of Drug December 22nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Piezoelectricity in a 2-D semiconductor: Berkeley Lab researchers discovery of piezoelectricty in molybdenum disulfide holds promise for future MEMS December 22nd, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Quantum Computing

Piezoelectricity in a 2-D semiconductor: Berkeley Lab researchers discovery of piezoelectricty in molybdenum disulfide holds promise for future MEMS December 22nd, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

Electron pairs on demand: Controlled emission and spatial splitting of electron pairs demonstrated December 4th, 2014

Graphene layer reads optical information from nanodiamonds electronically: Possible read head for quantum computers December 1st, 2014

Nanoelectronics

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Announcements

New non-invasive method can detect Alzheimer's disease early: MRI probe technology shows brain toxins in living animals for first time December 22nd, 2014

Piezoelectricity in a 2-D semiconductor: Berkeley Lab researchers discovery of piezoelectricty in molybdenum disulfide holds promise for future MEMS December 22nd, 2014

Quantum physics just got less complicated December 22nd, 2014

Enzyme Biosensor Used for Rapid Measurement of Drug December 22nd, 2014

Quantum nanoscience

Quantum physics just got less complicated December 22nd, 2014

Universality of charge order in cuprate superconductors: Charge order has been established in another class of cuprate superconductors, highlighting the importance of the phenomenon as a general property of these high-Tc materials December 22nd, 2014

Fraud-proof credit card possible because of quantum physics December 16th, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE