Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > MDRNA, Inc. Announces Patent Allowance Covering Methods for Cell Specific Delivery of siRNAs

Abstract:
Patent Further Strengthens MDRNA's RNAi Delivery IP Estate

MDRNA, Inc. Announces Patent Allowance Covering Methods for Cell Specific Delivery of siRNAs

Bothell, WA | Posted on March 31st, 2010

MDRNA, Inc. (NASDAQ: MRNA), a leading RNAi-based drug discovery and development company, today announced that the U.S. Patent and Trademark Office (USPTO) has issued a Notice of Allowance for patent application U.S. 12/701,397 covering methods for the delivery of siRNAs as well as a broad array of compounds with pharmacological activity. The patent identifies and protects peptides that were discovered using MDRNA's proprietary Trp Cage Phage Display Library and describes targeting peptides that demonstrate high binding affinity to, and internalization by, hepatocellular carcinoma cells.

"Specificity to individual cell types and internalization are key attributes required for peptide-directed delivery," said Barry Polisky, Ph.D., Chief Scientific Officer of MDRNA. "The Trp Cage Phage Display Library is proving to be a robust means to screen and identify peptides that impart these targeting characteristics. The addition of these novel peptides to our proprietary DiLA2 delivery platform technology permits the potential development of highly tissue- and cell-specific RNAi-based therapies for the treatment of cancers in which the need to differentiate between normal and diseased cells is important."

MDRNA's proprietary Trp Cage Phage Display Library (J Biol Chem. 2007 282(13):9813) is the subject of an issued patent, U.S. patent 7,329,725. The Trp Cage motif is highly structured allowing for the identification of peptides with high binding affinity for specific cell or tissue types, and avoids the limitations and weak binding often associated with linear peptide libraries. This technology is directly applicable to the Company's DiLA2 delivery platform as peptides are readily conjugated to the amino acid scaffold of a DiLA2. Peptides capable of directed delivery are expected to further improve the delivery efficiency of UsiRNAs, which have demonstrated significant knockdown of target genes in mouse models of liver and bladder cancer, and in non-human primates.

"This is the second Notice of Allowance that we have received in the past four months from the USPTO for a patent application that covers the use of our proprietary targeting peptide technology," said J. Michael French, President and CEO of MDRNA. "We are pleased that the USPTO recognizes the novelty and significance of our proprietary peptide targeting technology. The identification of additional peptides with high affinity to specific cell types, including certain cancers, further strengthens our broad patent estate."

On December 17, 2009, MDRNA received a Notice of Allowance from the USPTO for patent application U.S. 11/627,863, which covers the use of targeting peptides that have preferential binding affinity for lung tissue.

MDRNA Forward-Looking Statements

Statements made in this news release may be forward-looking statements within the meaning of Federal Securities laws that are subject to certain risks and uncertainties and involve factors that may cause actual results to differ materially from those projected or suggested. Factors that could cause actual results to differ materially from those in forward-looking statements include, but are not limited to: (i) the ability of MDRNA to obtain additional funding; (ii) the ability of MDRNA to attract and/or maintain manufacturing, research, development and commercialization partners; (iii) the ability of MDRNA and/or a partner to successfully complete product research and development, including preclinical and clinical studies and commercialization; (iv) the ability of MDRNA and/or a partner to obtain required governmental approvals; and (v) the ability of MDRNA and/or a partner to develop and commercialize products that can compete favorably with those of competitors. Additional factors that could cause actual results to differ materially from those projected or suggested in any forward-looking statements are contained in MDRNA's most recent periodic reports on Form 10-K and Form 10-Q that are filed with the Securities and Exchange Commission. MDRNA assumes no obligation to update and supplement forward-looking statements because of subsequent events.

####

About MDRNA
MDRNA is a biotechnology company focused on the development and commercialization of therapeutic products based on RNA interference (RNAi). Our goal is to improve human health through the development of RNAi-based compounds and drug delivery technologies that together provide superior therapeutic options for patients. Over the past decade, we have developed substantial capabilities in molecular biology, cellular biology, amino acid chemistry, peptide chemistry, pharmacology and bioinformatics, which we are applying to a wide range of RNAi technologies and delivery approaches. These capabilities plus the in-licensing of key RNAi-related intellectual property have rapidly enabled us to become a leading RNAi-based therapeutics company with a pre-clinical pipeline in oncology. Through our capabilities, expertise and know-how, we are incorporating multiple RNAi technologies as well as peptide- and liposomal-based delivery approaches into a single integrated drug discovery platform that will be the engine for our clinical pipeline as well as a versatile platform for establishing broad therapeutic partnerships with biotechnology and pharmaceutical companies. We are also investing in new technologies that we expect to lead to safer and more effective RNAi-based therapeutics while aggressively building upon our broad and extensive intellectual property estate. By combining broad expertise in siRNA science with proven delivery platforms and a strong IP position, MDRNA is well positioned as a leading RNAi-based drug discovery and development company.

About MDRNA's Technology
MDRNA has a broad intellectual property estate that encompasses four key RNAi technology platforms: siRNA constructs, chemistry, nucleic acid delivery, and gene targets. The MDRNA-owned siRNA constructs and chemistry include its proprietary UsiRNA construct, which is a duplex siRNA chemically modified with non-nucleotide acyclic monomers (UNAs), and is distinct from the standard siRNA construct used by others in the industry. UsiRNAs are fully recognized by the RNAi machinery and provide for potent RNAi activity while specific placement of UNAs in a duplex siRNA minimizes potential off-target effects by the guide strand and reduces undesired passenger strand activity. Furthermore, UsiRNAs escape the surveillance mechanisms associated with cytokine induction, and provide protection from nuclease degradation.

The MDRNA delivery platforms include DiLA2 and nanoparticle forming peptides. DiLA2 is an MDRNA proprietary delivery platform of novel synthetic di-alklylated amino acid compounds used to make liposomal delivery formulations. The DiLA2 platform enables MDRNA to tailor the charge, linker and acyl chains of amino acids in order to configure liposomes for delivery to target tissues of interest. In addition, the platform is designed to permit attachment of various peptides and other targeting molecules to improve a variety of delivery characteristics. The MDRNA peptide nanoparticle platform includes exclusively in-licensed and developed IP surrounding the use of peptides for nanoparticle formulations that increase cellular uptake and endosomal release of siRNAs. MDRNA is currently biopanning its patented phage display library to identify additional peptides for targeted delivery, cellular uptake and endosomal release of siRNA.

MDRNA owns or controls 16 issued or allowed patents, and has 36 pending patent applications, 126 pending foreign patent applications and 7 PCT applications.

For more information, please click here

Contacts:
MDRNA, Inc.:
Mark Bales, Ph.D.
IP Counsel
(425) 908-3634


Westwicke Partners (Investors):
Stefan Loren, Ph.D.
(443) 213-0507


John Woolford
(443) 213-0506


McKinney|Chicago (Media):
Alan Zachary
(312) 944-6784 x 316 or
(708) 707-6834

Copyright © MDRNA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanofiltration Membrane Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nanozirconia Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Self-Healing Nano Anti-rust Coatings Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nano Spray Instrument Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nanomedicine

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

European Technology Platform for Nanomedicine and ENATRANS European Consortium Launch the 2nd edition of the Nanomedicine Award: The Award to be presented at BIO-Europe conference in Munich, November 2015 July 30th, 2015

Take a trip through the brain July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Announcements

Nano Spray Instrument Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nanocellulose Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Theoretical Physicists at Freie Universitšt Berlin Develop New Insights into Interface between Classical and Quantum Worlds July 31st, 2015

Patents/IP/Tech Transfer/Licensing

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Smarter window materials can control light and energy July 22nd, 2015

Magnetic nanoparticles could be key to effective immunotherapy: New method moves promising strategy closer to clinical use July 15th, 2015

Nanobiotechnology

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

European Technology Platform for Nanomedicine and ENATRANS European Consortium Launch the 2nd edition of the Nanomedicine Award: The Award to be presented at BIO-Europe conference in Munich, November 2015 July 30th, 2015

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project