Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers use improved nanogenerators to power sensors based on zinc oxide nanowires

Georgia Tech professor Zhong Lin Wang holds an improved nanogenerator containing 700 rows of nanowire arrays. The generator was used to power nanometer-scale sensors. Credit: Photo: Gary Meek
Georgia Tech professor Zhong Lin Wang holds an improved nanogenerator containing 700 rows of nanowire arrays. The generator was used to power nanometer-scale sensors. Credit: Photo: Gary Meek

Abstract:
Self-powered nanosensors

Researchers use improved nanogenerators to power sensors based on zinc oxide nanowires

Atlanta, GA | Posted on March 30th, 2010

By combining a new generation of piezoelectric nanogenerators with two types of nanowire sensors, researchers have created what are believed to be the first self-powered nanometer-scale sensing devices that draw power from the conversion of mechanical energy. The new devices can measure the pH of liquids or detect the presence of ultraviolet light using electrical current produced from mechanical energy in the environment.

Based on arrays containing as many as 20,000 zinc oxide nanowires in each nanogenerator, the devices can produce up to 1.2 volts of output voltage, and are fabricated with a chemical process designed to facilitate low-cost manufacture on flexible substrates. Tests done with nearly one thousand nanogenerators - which have no mechanical moving parts - showed that they can be operated over time without loss of generating capacity.

Details of the improved nanogenerator and self-powered nanosensors were scheduled to be reported March 28 in the journal Nature Nanotechnology. The research was supported by the National Science Foundation, the Defense Advanced Research Projects Agency, and the U.S. Department of Energy.

"We have demonstrated a robust way to harvest energy and use it for powering nanometer-scale sensors," said Zhong Lin Wang, a Regents professor in the School of Materials Science and Engineering at the Georgia Institute of Technology. "We now have a technology roadmap for scaling these nanogenerators up to make truly practical applications."

For the past five years, Wang's research team has been developing nanoscale generators that use the piezoelectric effect - which produces electrical charges when wires made from zinc oxide are subjected to strain. The strain can be produced by simply flexing the wires, and current from many wires can be constructively combined to power small devices. The research effort has recently focused on increasing the amount of current and voltage generated and on making the devices more robust.

In the paper, Wang and collaborators report on a new configuration for the nanowires that embeds both ends of the tiny structures in a polymer substrate. The wires can then generate current as they are compressed in a flexible nanogenerator enclosure, eliminating the contact with a metallic electrode that was required in earlier devices. Because the generators are completely enclosed, they can be used in a variety of environments.

"We can now grow the wires chemically on substrates that are foldable and flexible and the processing can now be done at substrate temperatures of less than 100 degrees Celsius - about the temperature of coffee," explained Wang. "That will allow lower cost fabrication and growth on just about any substrate."

The nanogenerators are produced using a multi-step process that includes fabrication of electrodes that provide both Ohmic and Shottky contacts for the nanowires. The arrays can be grown both vertically and laterally. To maximize current and voltage, the growth and assembly requires alignment of crystalline growth, as well as the synchronization of charging and discharging cycles.

Production of vertical nanogenerators begins with growing zinc oxide nanowires on a gold-coated surface using a wet chemical method. A layer of polymethyl-methacrylate is then spun-coated onto the nanowires, covering them from top to bottom. Oxygen plasma etching is then performed, leaving clean tips on which a piece of silicon wafer coated with platinum is placed. The coated silicon provides a Shottky barrier, which is essential for maintaining electrical current flow.

The alternating current output of the nanogenerators depends on the amount of strain applied. "At a strain rate of less than two percent per second, we can produce output voltage of 1.2 volts," said Wang. "The power output is matched with the external load."

Lateral nanogenerators integrating 700 rows of zinc oxide nanowires produced a peak voltage of 1.26 volts at a strain of 0.19 percent. In a separate nanogenerator, vertical integration of three layers of zinc oxide nanowire arrays produced a peak power density of 2.7 milliwatts per cubic centimeter.

Wang's team has so far produced two tiny sensors that are based on zinc oxide nanowires and powered by the nanogenerators. By measuring the amplitude of voltage changes across the device when exposed to different liquids, the pH sensor can measure the acidity of liquids. An ultraviolet nanosensor depends on similar voltage changes to detect when it is struck by ultraviolet light.

In addition to Wang, the team authoring the paper included Sheng Xu, Yong Qin, Chen Xu, Yaguang Wei, and Rusen Wang, all from Georgia Tech's School of Materials Science and Engineering.

The new generator and nanoscale sensors open new possibilities for very small sensing devices that can operate without batteries, powered by mechanical energy harvested from the environment. Energy sources could include the motion of tides, sonic waves, mechanical vibration, the flapping of a flag in the wind, pressure from shoes of a hiker or the movement of clothing.

"Building devices that are small isn't sufficient," Wang noted. "We must also be able to power them in a sustainable way that allows them to be mobile. Using our new nanogenerator, we can put these devices into the environment where they can work independently and sustainably without requiring a battery."

####

About Georgia Institute of Technology
The Georgia Institute of Technology is one of the nation's top research universities, distinguished by its commitment to improving the human condition through advanced science and technology.

Georgia Tech's campus occupies 400 acres in the heart of the city of Atlanta, where 20,000 undergraduate and graduate students receive a focused, technologically based education.

Accredited by the Southern Association of Colleges and Schools (SACS)*, the Institute offers many nationally recognized, top-ranked programs. Undergraduate and graduate degrees are offered in the Colleges of Architecture, Computing, Engineering, Management, Sciences, and the Ivan Allen College of Liberal Arts. Georgia Tech is consistently ranked in U.S. News & World Report's top ten public universities in the United States.

For more information, please click here

Contacts:
John Toon

404-894-6986

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Possible Futures

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Sensors

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Tip-assisted chemistry enables chemical reactions at femtoliter scale November 16th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Announcements

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Energy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project