Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Blueprint for “artificial leaf” mimics Mother Nature

Part of the recipe for an artificial leaf, which draws on Mother Nature’s secrets, and could use sunlight and water to produce fuel.
Part of the recipe for an artificial leaf, which draws on Mother Nature’s secrets, and could use sunlight and water to produce fuel.

Abstract:
Scientists today (March 25) presented a design strategy to produce the long-sought artificial leaf, which could harness Mother Nature's ability to produce energy from sunlight and water in the process called photosynthesis. The new recipe, based on the chemistry and biology of natural leaves, could lead to working prototypes of an artificial leaf that capture solar energy and use it efficiently to change water into hydrogen fuel, they stated.

Blueprint for “artificial leaf” mimics Mother Nature

San Francisco, CA | Posted on March 29th, 2010

Their report was scheduled for the 239th National Meeting of the American Chemical Society (ACS), being held here this week. It was among more than 12,000 scientific reports scheduled for presentation at the meeting, one of the largest scientific gatherings of 2010.

"This concept may provide a new vista for the design of artificial photosynthetic systems based on biological paradigms and build a working prototype to exploit sustainable energy resources," Tongxiang Fan, Ph.D. and colleagues Di Zhang, Ph.D. and Han Zhou, Ph.D., reported, They are with the State Key Lab of Matrix Composites at Shanghai Jiaotong University, Shanghai, China.

Fan pointed out that using sunlight to split water into its components, hydrogen and oxygen, is one of the most promising and sustainable tactics to escape current dependence on coal, oil, and other traditional fuels. When burned, those fuels release carbon dioxide, the main greenhouse gas. Combustion of hydrogen, in contrast, forms just water vapor. That appeal is central to the much-discussed "Hydrogen Economy," and some auto companies, such as Toyota, have developed hydrogen-fueled cars. Lacking, however, is a cost-effective sustainable way to produce hydrogen.

With that in mind, Fan and co-workers decided to take a closer look at the leaf, nature's photosynthetic system, with plans to use its structure as a blueprint for their next generation of artificial systems. Not too surprisingly, the structure of green leaves provides them an extremely high light-harvesting efficiency. Within their architecture are structures responsible focusing and guiding of solar energy into the light-harvesting sections of the leaf, and other functions.

The scientists decided to mimic that natural design in the development of a blueprint for artificial leaf-like structures. It led them to report their recipe for the "Artificial Inorganic Leaf" (AIL), based on the natural leaf and titanium dioxide (TiO2) — a chemical already recognized as a photocatalyst for hydrogen production.

The scientists first infiltrated the leaves of Anemone vitifolia - a plant native to China - with titanium dioxide in a two-step process. Using advanced spectroscopic techniques, the scientists were then able to confirm that the structural features in the leaf favorable for light harvesting were replicated in the new TiO2 structure. Excitingly, the AIL are eight times more active for hydrogen production than TiO2 that has not been "biotemplated" in that fashion. AILs also are more than three times as active as commercial photo-catalysts. Next, the scientists embedded nanoparticles of platinum into the leaf surface. Platinum, along with the nitrogen found naturally in the leaf, helps increase the activity of the artificial leaves by an additional factor of ten.

In his ACS presentation, Fan reported on various aspects of Artificial Inorganic Leaf production, their spectroscopic work to better understand the macro- and microstructure of the photocatalysts, and their comparison to previously reported systems. The activity of these new "leaves", are significantly higher than those prepared with classic routes. Fan attributes these results to the hierarchical structures derived from natural leaves:

"Our results may represent an important first step towards the design of novel artificial solar energy transduction systems based on natural paradigms, particularly based on exploring and mimicking the structural design. Nature still has much to teach us, and human ingenuity can modify the principles of natural systems for enhanced utility."

####

About American Chemical Society
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 161,000 members, ACS is the world’s largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more information, please click here

Contacts:
Michael Bernstein

415-978-3504 (Meeting, March 21-25)

Michael Woods

415-978-3504 (Meeting, March 21-25)

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Keysight Technologies Shifts to Direct Sales of High-Performance Products in North America March 3rd, 2015

Cambrios and Heraeus Jointly Create New, High-Conductivity Transparent Conductors: Two Companies' Combined Products Dramatically Extend Flexible Substrate Capabilities for Next-Generation Mass-Market Technology Products March 3rd, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

Announcements

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Environment

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Heightened Efficiency in Purification of Wastewater Using Nanomembranes March 3rd, 2015

Colon + septic tank = unique, at times stinky, study: Researchers use lab-scale human colon and septic tank to study impact of copper nanoparticles on the environment March 2nd, 2015

Simple, Cost-Efficient Method Used to Determine Toxicants Growing in Pistachio February 26th, 2015

Energy

UC research partnership explores how to best harness solar power March 2nd, 2015

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

Automotive/Transportation

Glass coating improves battery performance: To improve lithium-sulfur batteries, researchers added glass cage-like coating and graphene oxide March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

Events/Classes

Cambrios and Heraeus Jointly Create New, High-Conductivity Transparent Conductors: Two Companies' Combined Products Dramatically Extend Flexible Substrate Capabilities for Next-Generation Mass-Market Technology Products March 3rd, 2015

International research partnership tricks the light fantastic March 2nd, 2015

UC research partnership explores how to best harness solar power March 2nd, 2015

Imec Demonstrates Compact Wavelength-Division Multiplexing CMOS Silicon Photonics Transceiver March 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE