Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Blueprint for “artificial leaf” mimics Mother Nature

Part of the recipe for an artificial leaf, which draws on Mother Nature’s secrets, and could use sunlight and water to produce fuel.
Part of the recipe for an artificial leaf, which draws on Mother Nature’s secrets, and could use sunlight and water to produce fuel.

Abstract:
Scientists today (March 25) presented a design strategy to produce the long-sought artificial leaf, which could harness Mother Nature's ability to produce energy from sunlight and water in the process called photosynthesis. The new recipe, based on the chemistry and biology of natural leaves, could lead to working prototypes of an artificial leaf that capture solar energy and use it efficiently to change water into hydrogen fuel, they stated.

Blueprint for “artificial leaf” mimics Mother Nature

San Francisco, CA | Posted on March 29th, 2010

Their report was scheduled for the 239th National Meeting of the American Chemical Society (ACS), being held here this week. It was among more than 12,000 scientific reports scheduled for presentation at the meeting, one of the largest scientific gatherings of 2010.

"This concept may provide a new vista for the design of artificial photosynthetic systems based on biological paradigms and build a working prototype to exploit sustainable energy resources," Tongxiang Fan, Ph.D. and colleagues Di Zhang, Ph.D. and Han Zhou, Ph.D., reported, They are with the State Key Lab of Matrix Composites at Shanghai Jiaotong University, Shanghai, China.

Fan pointed out that using sunlight to split water into its components, hydrogen and oxygen, is one of the most promising and sustainable tactics to escape current dependence on coal, oil, and other traditional fuels. When burned, those fuels release carbon dioxide, the main greenhouse gas. Combustion of hydrogen, in contrast, forms just water vapor. That appeal is central to the much-discussed "Hydrogen Economy," and some auto companies, such as Toyota, have developed hydrogen-fueled cars. Lacking, however, is a cost-effective sustainable way to produce hydrogen.

With that in mind, Fan and co-workers decided to take a closer look at the leaf, nature's photosynthetic system, with plans to use its structure as a blueprint for their next generation of artificial systems. Not too surprisingly, the structure of green leaves provides them an extremely high light-harvesting efficiency. Within their architecture are structures responsible focusing and guiding of solar energy into the light-harvesting sections of the leaf, and other functions.

The scientists decided to mimic that natural design in the development of a blueprint for artificial leaf-like structures. It led them to report their recipe for the "Artificial Inorganic Leaf" (AIL), based on the natural leaf and titanium dioxide (TiO2) — a chemical already recognized as a photocatalyst for hydrogen production.

The scientists first infiltrated the leaves of Anemone vitifolia - a plant native to China - with titanium dioxide in a two-step process. Using advanced spectroscopic techniques, the scientists were then able to confirm that the structural features in the leaf favorable for light harvesting were replicated in the new TiO2 structure. Excitingly, the AIL are eight times more active for hydrogen production than TiO2 that has not been "biotemplated" in that fashion. AILs also are more than three times as active as commercial photo-catalysts. Next, the scientists embedded nanoparticles of platinum into the leaf surface. Platinum, along with the nitrogen found naturally in the leaf, helps increase the activity of the artificial leaves by an additional factor of ten.

In his ACS presentation, Fan reported on various aspects of Artificial Inorganic Leaf production, their spectroscopic work to better understand the macro- and microstructure of the photocatalysts, and their comparison to previously reported systems. The activity of these new "leaves", are significantly higher than those prepared with classic routes. Fan attributes these results to the hierarchical structures derived from natural leaves:

"Our results may represent an important first step towards the design of novel artificial solar energy transduction systems based on natural paradigms, particularly based on exploring and mimicking the structural design. Nature still has much to teach us, and human ingenuity can modify the principles of natural systems for enhanced utility."

####

About American Chemical Society
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 161,000 members, ACS is the world’s largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more information, please click here

Contacts:
Michael Bernstein

415-978-3504 (Meeting, March 21-25)

Michael Woods

415-978-3504 (Meeting, March 21-25)

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Searching for a nanotech self-organizing principle May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Possible Futures

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Announcements

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Environment

Team builds first quantum cascade laser on silicon: Eliminates the need for an external light source for mid-infrared silicon photonic devices or photonic circuits April 21st, 2016

Atomically thin sensor detects harmful air pollution in the home April 18th, 2016

Catalyst could make production of key chemical more eco-friendly April 10th, 2016

Nanoporous material's strange "breathing" behavior April 7th, 2016

Energy

Nanoparticles present sustainable way to grow food crops May 1st, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Flipping a chemical switch helps perovskite solar cells beat the heat April 26th, 2016

Automotive/Transportation

New spin Seebeck thermoelectric device with higher conversion efficiency created April 26th, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Ruthenium nanoframes open the doors to better catalysts April 4th, 2016

Heat and light get larger at the nanoscale: Columbia-led research team first to demonstrate a strong, non-contact heat transfer channel using light with performances that could lead to high efficiency electricity generation April 2nd, 2016

Events/Classes

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Introducing the RE標ORK Bio-inspired Robotics Summit in Berlin April 27th, 2016

ORIG3N Added to Companies Presenting at Harris & Harris Group's Annual Meeting, Tuesday June 7, 2016, the New York Genome Center April 27th, 2016

Team builds first quantum cascade laser on silicon: Eliminates the need for an external light source for mid-infrared silicon photonic devices or photonic circuits April 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic