Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Cancer Therapy Using Unique Imaging, Delivery System Focus of NSF CAREER Award

Marissa Nichole Rylander, Virginia Tech assistant professor jointly appointed in the Department of Mechanical Engineering and Virginia Tech – Wake Forest University School of Biomedical Engineering and Sciences (SBES), works in her laboratory.
Marissa Nichole Rylander, Virginia Tech assistant professor jointly appointed in the Department of Mechanical Engineering and Virginia Tech – Wake Forest University School of Biomedical Engineering and Sciences (SBES), works in her laboratory.

Abstract:
Preliminary research on cancer treatments using nanotechnology and laser therapy has led to a National Science Foundation (NSF) Faculty Early Career Development (CAREER) award for Marissa Nichole Rylander, Virginia Tech assistant professor jointly appointed in the Department of Mechanical Engineering and Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences (SBES).

Cancer Therapy Using Unique Imaging, Delivery System Focus of NSF CAREER Award

Blacksburg, VA | Posted on March 29th, 2010

The CAREER grant will allow Rylander to develop and utilize a novel sensing system she co-invented called the "holey scaffold." Her design will characterize the three-dimensional and time dependent motion of a nanoparticle used in a treatment process. It will also illustrate the dynamic, light-activated thermal and chemical response of the tumor to the nanoparticle-mediated laser therapy for varying nanoparticle properties and laser parameters within both in vitro and in vivo tumor systems.

The "holey scaffold" is the first system capable of minimally invasive and non-destructive light sensitive, molecular sensing and control of biological and transport processes within living organisms. Rylander said the "holey scaffold can be visualized as a miniature microscope used in conjunction with a living system. The holey scaffold is built from tissue scaffolding and is embedded with a network of hollow microchannels. Typically made from biodegradable synthetics or biological materials such as collagen, the scaffold promotes tissue growth.

Some microchannels can be used to perform controlled delivery of biological agents (e.g. nutrients, growth factors, tumor cells, nanoparticles, therapeutic agents). Other microchannels can be used to introduce micron size fibers for non-destructive, in situ, and real-time imaging of biological processes or therapeutic light delivery.

Rylander, who joined the Virginia Tech faculty in 2006, earned her doctorate in biomedical engineering from the University of Texas at Austin (UT) in 2005 where she remained as a post doctoral fellow jointly appointed in the biomedical engineering department and Institute for Computational Engineering and Sciences.

Her CAREER award, in part, is a continuation of work at UT on characterization of injury and heat shock protein (HSP) expression in prostate cancer cells and tumors in response to elevated temperatures associated with water bath and laser heating. Knowledge of the HSP expression distribution in tumors allows the identification of tumor regions with a high likelihood of survival and recurrence. Therefore, therapeutic procedures can be modified to optimize HSP expression to enhance treatment outcome.

Based on these experimental measurements she developed novel computational treatment planning models to predict the temperature, HSP expression, and injury at the cellular and tissue level in response to laser therapy. Rylander's goal with her $400,000 CAREER award is to ultimately develop more effective and selective laser cancer therapies by incorporating novel nanoparticles to enhance laser based thermal and chemical treatments.

With her holey scaffold design, she will be able to measure dynamic nanoparticle mass transport, temperature, cell viability, HSP expression, and reactive oxygen species (ROS) production in real-time within an in vitro tumor in a bioreactor or an in vivo tumor within a mouse. She will use a variety of nanoparticles including carbon nanotubes, novel embodiments of carbon nanotubes and fullerenes, and carbon nanohorns in combination with laser irradiation.

By analyzing the tumor's response to varying nanoparticle types, delivery methods, and laser parameters, Rylander expects to be able to create a multi-component, treatment planning computational model for nanoparticle-medicated laser therapy that can be used by clinicians to determine appropriate nanoparticle properties and laser parameters to achieve selective and effective cancer treatment.

Her CAREER award will also allow her to create a course on nanotherapeutics for undergraduates and graduate students. It will explore the basics of nanoparticles, the experimental measurement of nanoparticle interactions with biological tissues, photothermal, and photochemical mechanisms of nanotherapy. The course will also address the computer modeling of cellular and tissue responses to nanoparticles.

This CAREER project will also establish a multi-tier education and outreach plan that will integrate research elements and discoveries into multidisciplinary educational and research experiences for high school students and teachers from underprivileged schools in West Virginia and undergraduates and graduate students at Virginia Tech.

"It is my long-term career goal to be able to develop effective and selective cancer therapies based on nanotechnology that can be readily implemented as a viable treatment option for millions of cancer patients," Rylander said.

####

About Virginia Tech
Through a combination of its three missions of learning, discovery, and engagement, Virginia Tech continually strives to accomplish the charge of its motto: Ut Prosim (That I May Serve).

For more information, please click here

Contacts:
Phone news office: 540-231-8508
Phone main: 540-231-6000
Fax news office: 540-231-4040

Copyright © Virginia Tech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

Nanospiked bacteria are the brightest hard X-ray emitters July 2nd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

Possible Futures

Harris & Harris Group Portfolio Company D-Wave Systems Announces 1,000 Qubit Processor and is Discussed in the Economist June 23rd, 2015

Global Nanoclays Market Analysis, Size, Growth, Trends And Segment Forecasts, 2015 To 2022: Grand View Research, Inc June 15th, 2015

Healthcare Nanotechnology (Nanomedicine) Market Size To 2020 June 5th, 2015

Environmental Issues to Hamper Growth of Global Nanocomposites Market June 4th, 2015

Academic/Education

Oxford Instruments’ TritonXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Rice University boots up powerful microscopes: New electron microscopes will capture images at subnanometer resolution June 29th, 2015

Six top Catalan research centres constitute ‘The Barcelona Institute of Science and Technology’ to pursue a joint scientific endeavour June 27th, 2015

Lancaster University revolutionary quantum technology research receives funding boost June 22nd, 2015

Nanotubes/Buckyballs/Fullerenes

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Cellulose from wood can be printed in 3-D June 17th, 2015

Nanomedicine

Iranian Scientists Find Simple, Economic Method to Synthesize Antibacterial Nanoparticles July 2nd, 2015

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

Chitosan coated, chemotherapy packed nanoparticles may target cancer stem cells June 30th, 2015

Announcements

Nanospiked bacteria are the brightest hard X-ray emitters July 2nd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

World’s 1st Full-Color, Flexible, Skin-Like Display Developed at UCF June 24th, 2015

Physicists fine-tune control of agile exotic materials: Tunable hybrid polaritons realized with graphene layer on hexagonal boron nitride June 24th, 2015

Robust new process forms 3-D shapes from flat sheets of graphene June 23rd, 2015

Nanobiotechnology

Engineering the world’s smallest nanocrystal July 2nd, 2015

Nanometric sensor designed to detect herbicides can help diagnose multiple sclerosis June 23rd, 2015

Newly-Developed Biosensor in Iran Detects Cocaine Addiction June 23rd, 2015

Researchers first to show that Saharan silver ants can control electromagnetic waves over an extremely broad range of the electromagnetic spectrum—findings may lead to biologically inspired coatings for passive radiative cooling of objects June 19th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project