Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Carnegie Mellon Scientists Create Toolbox Of Fluorescent Probes in a Rainbow of Colors

The above figure illustrates three populations of yeast cells labeled with green, orange and red fluoromodules expressed on the cell surface.
The above figure illustrates three populations of yeast cells labeled with green, orange and red fluoromodules expressed on the cell surface.

Abstract:
Scientists at Carnegie Mellon University's Department of Chemistry and Molecular Biosensor and Imaging Center (MBIC) are advancing the state-of-the-art in live cell fluorescent imaging by developing a new class of fluorescent probes that span the spectrum ó from violet to the near-infrared.

Carnegie Mellon Scientists Create Toolbox Of Fluorescent Probes in a Rainbow of Colors

San Francisco, CA | Posted on March 26th, 2010

The new technology, called fluoromodules, can be used to monitor biological activities of individual proteins in living cells in real time. At the 239th national meeting of the American Chemical Society, Carnegie Mellon chemists and MBIC scientists will discuss recent advances in their fluoromodule technology that have produced diverse and photostable probes.

Fluoromodules, which consist of dye-protein complexes, provide alternatives to common fluorescent proteins, such as Green Fluorescent Protein (GFP), but with a wider selection of colors and the potential for significantly greater photostability, which allows scientists to image the dye for longer periods of time. This is made possible by the fact that the dye is noncovalently bound to the protein, which allows fresh dye to replace bleached dye.

"We initially isolated and characterized fluoromodules that generate fluorescence from the fluorogenic dyes thiazole orange and malachite green. We are now expanding our repertoire by synthesizing new dyes that emit in the orange and violet regions of the spectrum, and engineering proteins that bind to the new dyes with great affinity," said Chemistry Professor Bruce Armitage, co-director of the Center for Nucleic Acid Science and Technology at Carnegie Mellon and a member of the MBIC team developing the fluoromodules.

Fluoromodules are made of a fluorogen-activating protein (FAP) and a non-fluorescent dye called a fluorogen. The FAP, which is genetically expressed in a cell and tagged to a protein of interest, does not become fluorescent until it binds with its fluorogen. With the novel FAPs and associated fluorogens created by the MBIC team, the researchers can control when a target protein lights up, allowing them to track proteins on the cell surface and within living cells in very simple and direct ways, eliminating cumbersome experimental steps.

Recent advances in the MBIC fluoromodule technology being presented at the ACS meeting include:

> Working with a FAP that had a low affinity for the fluorogenic dye dimethlindole red (DIR), graduate student Hayriye ÷zhalici-‹nal used PCR mutagenesis to introduce mutations into the FAP's genetic sequence. A small number of mutations increased several-fold the protein's affinity for DIR, enabling very specific and selective binding of the FAP to its dye partner (DIR). ÷zhalici-‹nal will present this work at 9:50 a.m., Thursday, March 25 during the Follow-on Biologics: Protein Engineering session located in room 201 West Bldg. in the Moscone Center.

> Graduate student Nathaniel Shank synthesized a modified DIR, making it eight-times more photostable. This significant improvement could have an impact on single molecule imaging. Additionally, the modified DIR emits in the orange range of the spectrum, adding another color to the fluoromodule toolkit being developed at MBIC. Shank will present this work at 8 p.m., Tuesday, March 23 during the Total Synthesis of Complex Molecules, Material Devices & Switches, Physical Organic Chemistry poster session located in Hall D of the Moscone Center.

> By synthesizing a new dye and identifying FAPs that bind to it, research chemist Gloria Silva and graduate student Kim Zanotti developed a fluoromodule that emits fluorescence in the violet, which is a welcome addition to a very limited number of probes able to emit in the violet portion of the spectrum. Zanotti will present this work a 6 p.m., Tuesday, March 23 during the poster session located in room 3009/3011 West Bldg. in the Moscone Center.

The aforementioned work, funded by the Pennsylvania Department of Health and the National Institutes of Health (NIH), is part of the mission of the NIH National Technology Center for Networks and Pathways. The effort, headquartered at Carnegie Mellon, is a partnership between Carnegie Mellon and the University of Pittsburgh. For more information, visit www.mbic.cmu.edu/

####

For more information, please click here

Contacts:
Jocelyn Duffy
412-268-9982

Copyright © Carnegie Mellon University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Smart hydrogel coating creates 'stick-slip' control of capillary action July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Possible Futures

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Global Zinc oxide nanopowders Industry 2015: Acute Market Reports July 25th, 2015

Academic/Education

Deben reports on the use of their CT500 in the X-ray microtomography laboratory at La Trobe University, Melbourne, Australia July 22nd, 2015

JPK reports on the use of SPM in the Messersmith Group at UC Berkeley looking at biologically inspired polymer adhesives. July 21st, 2015

Renishaw adds Raman analysis to Scanning Electron Microscopy at the University of Sydney, Australia July 9th, 2015

Oxford Instrumentsí TritonXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Nanomedicine

Stretching the limits on conducting wires July 25th, 2015

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Nanopaper as an optical sensing platform July 23rd, 2015

Albany College of Pharmacy and Health Sciences to Host One Week Symposium on Nanomedicine July 23rd, 2015

Sensors

American Chemical Society expands reach to include rapidly emerging area of sensor science July 25th, 2015

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Iranian Scientists Create Best Conditions for Synthesis of Gold Nanolayers July 23rd, 2015

Nanopaper as an optical sensing platform July 23rd, 2015

Announcements

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Nanobiotechnology

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Programming adult stem cells to treat muscular dystrophy and more by mimicking nature July 22nd, 2015

Biophotonics - Global Strategic Business Report 2015 July 21st, 2015

Rare form: Novel structures built from DNA emerge July 20th, 2015

Research partnerships

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Stretching the limits on conducting wires July 25th, 2015

Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes July 24th, 2015

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project