Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Flexible electronics could help put off-beat hearts back on rhythm

A team of researchers led by John Rogers, the Lee J. Flory-Founder Chair in Engineering at Illinois, have developed biocompatible silicon devices that could mark the beginning of a new wave of surgical electronics. Credit: Photo by Thompson-McClellan
A team of researchers led by John Rogers, the Lee J. Flory-Founder Chair in Engineering at Illinois, have developed biocompatible silicon devices that could mark the beginning of a new wave of surgical electronics. Credit: Photo by Thompson-McClellan

Abstract:
Biocompatible electronics could enable new surgical applications

Flexible electronics could help put off-beat hearts back on rhythm

Urbana, IL | Posted on March 26th, 2010

Arrhythmic hearts soon may beat in time again, with minimal surgical invasion, thanks to flexible electronics technology developed by a team of University of Illinois researchers, in collaboration with the University of Pennsylvania School of Medicine and Northwestern University. These biocompatible silicon devices could mark the beginning of a new wave of surgical electronics.

Co-senior author John Rogers, the Lee J. Flory-Founder Chair in Engineering Innovation and a professor of materials science and engineering at Illinois, and his team will publish their breakthrough in the cover story of the March 24 issue of Science Translational Medicine.

Several treatments are available for hearts that dance to their own tempo, ranging from pacemaker implants to cardiac ablation therapy, a process that selectively targets and destroys clusters of arrhythmic cells. Current techniques require multiple electrodes placed on the tissue in a time-consuming, point-by-point process to construct a patchwork cardiac map. In addition, the difficulty of connecting rigid, flat sensors to soft, curved tissue impedes the electrodes' ability to monitor and stimulate the heart.

Rogers and his team have built a flexible sensor array that can wrap around the heart to map large areas of tissue at once. The array contains 2,016 silicon nanomembrane transistors, each monitoring electricity coursing through a beating heart.

The Pennsylvania team demonstrated the transistor array on the beating hearts of live pigs, a common model for human hearts. They witnessed a high-resolution, real-time display of the pigs' pulsing cardiac tissues - something never before possible.

"We believe that this technology may herald a new generation of devices for localizing and treating abnormal heart rhythms," said co-sernior author Brian Litt, of the University of Pennsylvania.

"This allows us to apply the full power of silicon electronics directly to the tissue," said Rogers, a renowned researcher in the area of flexible, stretchable electronics. As the first class of flexible electronics that can directly integrate with bodily tissues, "these approaches might have the potential to redefine design strategies for advanced surgical devices, implants, prosthetics and more," he said.

The biocompatible circuits - the first ones unperturbed by immersion in the body's salty fluids - represent a culmination of seven years of flexible electronics study by Rogers' group. The researchers build circuits from ultrathin, single-crystal silicon on a flexible or stretchy substrate, like a sheet of plastic or rubber. The nanometer thinness of the silicon layer makes it possible to bend and fold the normally rigid semiconductor.

"If you can create a circuit that's compliant and bendable, you can integrate it very effectively with soft surfaces in the body," such as the irregular, constantly moving curves of the heart, Rogers said.

Collaborations with a theoretical mechanics group at Northwestern University, led by Younggang Huang, yielded important insights into the designs.

The patchwork grid of cardiac sensors adheres to the moist surfaces of the heart on its own, with no need for probes or adhesives, and lifts off easily. The array of hundreds of sensors gives cardiac surgeons a more complete picture of the heart's electrical activity so they can quickly find and fix any short circuits. In fact, the cardiac device boasts the highest transistor resolution of any class of flexible electronics for non-display applications.

The team's next step is to adapt the technology for use with non-invasive catheter procedures, Rogers said. The U. of I. and Pennsylvania teams also are exploring applications for the arrays in neuroscience, applying grids to brain surfaces to study conditions of unusual electrical activity, such as epilepsy.

"It sets out a new design paradigm for interfacing electronics to the human body, with a multitude of possible applications in human health," Rogers said.

This work was supported by the U.S. Department of Energy, a National Security Science and Engineering Faculty Fellowship, the National Institutes of Health and the Klingenstein Foundation.

####

For more information, please click here

Contacts:
Liz Ahlberg

217-244-1073

John Rogers
217-244-4979

Copyright © Eurekalert

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

HP Supercomputer at NREL Garners Top Honor October 19th, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Academic/Education

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Raytheon, UMass Lowell open on-campus research institute: Industry leaderís researchers to collaborate with faculty, students to move key technologies forward through first-of-its-kind partnership October 11th, 2014

SUNY Colleges of Nanoscale Science and Engineering and National Institute for Occupational Safety and Health Announce Expanded Partnership October 2nd, 2014

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Nanomedicine

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

European Commission opens the gate towards the implementation of Nanomedicine Translation Hub October 16th, 2014

Tuning light to kill deep cancer tumors: Nanoparticles developed at UMass Medical School advance potential clinical application for photodynamic therapy October 15th, 2014

Announcements

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Nanobiotechnology

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Scientists Map Key Moment in Assembly of DNA-Splitting Molecular Machine: Crucial steps and surprising structures revealed in the genesis of the enzyme that divides the DNA double helix during cell replication October 15th, 2014

DNA nano-foundries cast custom-shaped metal nanoparticles: DNA's programmable assembly is leveraged to form precise 3D nanomaterials for disease detection, environmental testing, electronics and beyond October 10th, 2014

Charged graphene gives DNA a stage to perform molecular gymnastics October 9th, 2014

Research partnerships

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

IRLYNX and CEA-Leti to Streamline New CMOS-based Infrared Sensing Modules Dedicated to Human-activities Characterization October 15th, 2014

Scientists Map Key Moment in Assembly of DNA-Splitting Molecular Machine: Crucial steps and surprising structures revealed in the genesis of the enzyme that divides the DNA double helix during cell replication October 15th, 2014

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven October 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE