Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


Home > Press > F is for Fluoresence and Fluorine

New dyes for optical nanoscopy

F is for Fluoresence and Fluorine

Weinheim, Germany | Posted on March 26th, 2010

The imaging of living cells at the molecular level was barely a dream twenty years ago. Today, however, this dream is close to becoming reality. In the Max Planck Institute for NanoBiophotonics in Göttingen, Stefan Hell (2009 recipient of the Otto Hahn Prize) has developed fluorescence microscopy methods for observing objects on the nanoscale and with his colleagues Vladimir Belov and Christian Eggeling a new series of photostable dyes that can be used as fluorescent markers has been realised, as reported in a cover story in Chemistry—A European Journal.

Over the last two decades Stefan Hell and his group have revolutionized the art of microscopy beyond limits thought to have been unbreakable. Due to the wave properties (diffraction) of light, the resolution of an optical microscope is limited to object details of about 0.2 micrometers. The laws of physics appeared to prohibit imaging details beyond this limit. Stefan Hell saw beyond this limitation and about fifteen years ago his vision became concrete; he developed a method for observing objects at the nanometer scale by sequentially turning the fluorescence of nearby molecules off by stimulated emission, a technique known as STED nanoscopy.

The sensitivity of this technique depends on the brightness of the applied fluorescence markers and their photostability is also of great importance. The NanoBiophotonics group has succeeded in synthesizing a series of highly photostable and highly fluorescent dyes. These compounds emit green and orange light and are based on fluorine derivatives of the well-known Rhodamine dye. The use of these dyes in STED nanoscopy leads to images of high-quality with respect to brightness and signal-to-background ratio; further the resolution over that of more traditional optical microscopes is significantly improved giving more detailed structural information.

These rhodamine-based fluorine derivatives are even more special because of their versatility. The compounds are available in hydrophilic and lipophilic forms, and with the inclusion of amino reactive groups, they can be easily attached to antibodies or other biomolecules in the course of standard labeling and immunostaining procedures. The group demonstrate that these new dyes are able to cross cellular membranes and reach the interior of living cells, which could lead to new labeling strategies for biological systems. All eyes are now on Göttingen to see just how far optical nanoscopy can go.

Author: Stefan Hell, Max Planck Institute of NanoBiophotonics, Göttingen (Germany),

Title: New Fluorinated Rhodamines for Optical Microscopy and Nanoscopy

Chemistry - A European Journal 2010, 16, No. 15, 4477-4488, Permalink to the article:


About Wiley InterScience
Wiley InterScience ( provides access to over 3 million articles across nearly 1500 journals and 7000 Online Books and major reference works. It also holds industry leading databases such as The Cochrane Library, chemistry databases and the acclaimed Current Protocols laboratory manuals.

For more information, please click here

Editorial office

Amy Molnar (US)

Jennifer Beal (UK)

Alina Boey (Asia)

Copyright © Wiley InterScience

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists found a natural nanostructure to control the flow of light October 4th, 2015

Horizontal magnetic tunneling in a field-effect device integrated on Silicon October 3rd, 2015

Crystal clear: Thousand-fold fluorescence enhancement in an all-polymer thin film: Griffith University researchers report breakthrough due to novel and multi-layer Colloidal Photonic Crystal structure October 2nd, 2015

Industrial Nanotech, Inc. Announces New Office in Arizona to Service the Company's New Regional and National Home Builders in Arizona and Nevada October 2nd, 2015


Scientists found a natural nanostructure to control the flow of light October 4th, 2015

Industrial Nanotech, Inc. Announces New Office in Arizona to Service the Company's New Regional and National Home Builders in Arizona and Nevada October 2nd, 2015

Production of High Temperature Ceramics with Modified Properties in Iran October 2nd, 2015

ISO Approves 2 Int'l Nanotechnology-Related Standards Proposed by Iran October 2nd, 2015


Rice news release: Smaller is better for nanotube analysis: Rice University's variance spectroscopy technique advances nanoparticle analysis September 30th, 2015

Flex-ANA workshop at NCSU: Flex-ANA: An Automated System for Nanomechanical Analysis of Soft Materials — October 28 (NCSU, Raleigh, NC, US) September 30th, 2015

Nanosurf at the SYNMarburg 2015 Summer School: Nanosurf at the SYNMarburg 2015 Summer School September 30th, 2015

Physicists map the strain, pixel by pixel, in wonder material graphene September 30th, 2015

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

Car Brands
Buy website traffic