Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New spintronics material could help usher in next generation of microelectronics

Abstract:
UCLA team couples quantum dots, silicon for room-temperature functionality

By Wileen Wong Kromhout

New spintronics material could help usher in next generation of microelectronics

Los Angeles, CA | Posted on March 25th, 2010

As the electronics industry works toward developing smaller and more compact devices, the need to create new types of scaled-down semiconductors that are more efficient and use less power has become essential.

In a study to be published in the April issue of Nature Materials (currently available online), researchers from UCLA's Henry Samueli School of Engineering and Applied Science describe the creation of a new material incorporating spintronics that could help usher in the next generation of smaller, more affordable and more power-efficient devices.

While conventional complementary metal-oxide semiconductors (CMOS), a technology used today in all types of electronics, rely on electrons' charge to power devices, the emerging field of spintronics exploits another aspect of electrons — their spin, which could be manipulated by electric and magnetic fields.

"With the use of nanoscaled magnetic materials, spintronics or electronic devices, when switched off, will not have a stand-by power dissipation problem. With this advantage, devices with much lower power consumption, known as non-volatile electronics, can become a reality," said the study's corresponding author, Kang L. Wang, Raytheon Professor of Electrical Engineering at UCLA Engineering, whose team carried out the research. "Our approach provides a possible solution to address the critical challenges facing today's microelectronics industry and sheds light on the future of spintronics."

"We've built a new class of material with magnetic properties in a dilute magnetic semiconductor (DMS) system," said Faxian Xiu, a UCLA senior researcher and lead author of the study. "Traditionally, it's been really difficult to enhance the ferromagnetism of this material above room temperature. However in our work, by using a type of quantum structure, we've been able to push the ferromagnetism above room temperature."

Ferromagnetism is the phenomenon by which certain materials form permanent magnets. In the past, the control of magnetic properties has been accomplished by applying an electric current. For example, passing an electric current will generate magnetic fields. Unfortunately, using electric currents poses significant challenges for reducing power consumption and for device miniaturization.

"You can think of a transformer, which passes a current to generate a magnetic field. This will have huge power dissipation (heat)," Xiu said. "In our study, we tried to modulate the magnetic properties of DMS without passing the current."

Ferromagnetic coupling in DMS systems, the researchers say, could lead to a new breed of magneto-electronic devices that alleviate the problems related to electric currents. The electric field-controlled ferromagnetism reported in this study shows that without passing an electric current, electronic devices could be operated and functioning based on the collective spin behavior of the carriers. This holds great promise for building next-generation nanoscaled integrated chips with much lower power consumption.

To achieve the ferromagnetic properties, Kang's group grew germanium dots on a silicon p-type substrate, creating quantum dots on top of the substrate. Silicon and germanium are ideal candidates because of their excellent compatibility and ability to be incorporated within conventional CMOS technology. The quantum dots, which are themselves semiconductors, would then be utilized in building new devices.

"To demonstrate possible applications of these fantastic quantum dots, we fabricated metal-oxide semiconductor devices and used these dots as the channel layer. By applying an electric field, we are able to control the hole concentration inside the dots and thus modulate their ferromagnetism," Xiu said.

"This finding is significant in the sense that it opens up a completely new paradigm for next-generation microelectronics, which takes advantage of the spin properties of carriers, in addition to the existing charge transport as envisaged in the conventional CMOS technology."

The key is to be able to use this material at room temperature.

"The material is not very useful if it doesn't work at room temperature," Wang said. "We want to be able to use it anywhere. In this work, we've achieved success on electric field-controlled ferromagnetism at 100 degrees Kelvin and are moving towards room temperature. We feel strongly that we'll be able to accomplish this. Once we've achieved room-temperature controllability, we'll be able to start building real devices to demonstrate its viability in non-volatile electronic devices."

Study collaborators Jin Zou, professor of material engineering, and postdoctoral fellow Yong Wang, both from the University of Queensland, Australia, also contributed significantly to this work.

The study was funded by the Center for Functional Engineered Nano Architectronics (FENA), the Western Institute of Nanoelectronics (WIN) at UCLA Engineering, and in part by Intel Corp. and the Australian government.

####

About UCLA Henry Samueli School of Engineering and Applied Science
The UCLA Henry Samueli School of Engineering and Applied Science, established in 1945, offers 28 academic and professional degree programs, including an interdepartmental graduate degree program in biomedical engineering. Ranked among the top 10 engineering schools at public universities nationwide, the school is home to eight multimillion-dollar interdisciplinary research centers in wireless sensor systems, nanotechnology, nanomanufacturing and nanoelectronics, all funded by federal and private agencies.

For more information, please click here

Contacts:
Media Contacts
Wileen Wong Kromhout,
(310) 206-0540

Copyright © UCLA Henry Samueli School of Engineering and Applied Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Industrial Nanotech, Inc. Announces Next Large Order from the Oil and Gas Industry March 26th, 2015

Quantum compute this -- WSU mathematicians build code to take on toughest of cyber attacks: Revamped knapsack code offers online security for the future March 26th, 2015

Thousands of atoms entangled with a single photon: Result could make atomic clocks more accurate March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Govt.-Legislation/Regulation/Funding/Policy

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

Thousands of atoms entangled with a single photon: Result could make atomic clocks more accurate March 26th, 2015

Carbon nanotube fibers make superior links to brain: Rice University invention provides two-way communication with neurons March 25th, 2015

Academic/Education

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

FEI Joins University of Ulm and CEOS on SALVE Project Research Collaboration: The Sub-Ångström Low Voltage Electron (SALVE) microscope should improve contrast and reduce damage on bio-molecules and two-dimensional nanomaterials, such as graphene March 18th, 2015

Spintronics

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

Insight into inner magnetic layers: Measurements at BESSY II have shown how spin filters forming within magnetic sandwiches influence tunnel magnetoresistance -- results that can help in designing spintronic component- February 17th, 2015

A new spin on spintronics: Michigan team tests radiation-resistant spintronic material, possibly enabling electronic devices that will work in harsh environments February 17th, 2015

Nanoscale Mirrored Cavities Amplify, Connect Quantum Memories: Advance could lead to quantum computing and the secure transfer of information over long-distance fiber optic networks January 28th, 2015

Chip Technology

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

NXP and GLOBALFOUNDRIES Announce Production of 40nm Embedded Non-Volatile Memory Technology: Co-developed technology to leverage GLOBALFOUNDRIES 40nm process technology platform March 24th, 2015

Building shape inspires new material discovery March 24th, 2015

EEE Photonics Society’s Fourth Annual Optical Interconnects Conference Seeks to Bring Together the Latest Advanced Optical Interconnect Technologies, Systems & Architectures for the Next Generation of Supercomputers & Datacenters March 23rd, 2015

Nanoelectronics

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

UW scientists build a nanolaser using a single atomic sheet March 24th, 2015

Iranian Researchers Present Model to Determine Dynamic Behavior of Nanostructures March 24th, 2015

Sharper nanoscopy: What happens when a quantum dot looks in a mirror? March 19th, 2015

Announcements

Industrial Nanotech, Inc. Announces Next Large Order from the Oil and Gas Industry March 26th, 2015

Quantum compute this -- WSU mathematicians build code to take on toughest of cyber attacks: Revamped knapsack code offers online security for the future March 26th, 2015

Thousands of atoms entangled with a single photon: Result could make atomic clocks more accurate March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Quantum Dots/Rods

Tiny bio-robot is a germ suited-up with graphene quantum dots March 24th, 2015

Rice fine-tunes quantum dots from coal: Rice University scientists gain control of electronic, fluorescent properties of coal-based graphene March 18th, 2015

Ghent University leads large-scale European training project on quantum dots March 13th, 2015

Optical nanoantennas set the stage for a NEMS lab-on-a-chip revolution February 24th, 2015

Research partnerships

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

ORNL-led team demonstrates desalination with nanoporous graphene membrane March 25th, 2015

New kind of 'tandem' solar cell developed: Researchers combine 2 types of photovoltaic material to make a cell that harnesses more sunlight March 24th, 2015

UW scientists build a nanolaser using a single atomic sheet March 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE