Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New, high-strength and lightweight nacre-mimetic material applicable to large-scale industrial processes

Abstract:
The Molecular Materials Research Group within the Department of Applied Physics in collaboration with VTT and Royal Institute of Technology shows the first example of light-weight but mechanically strong nanocomposite material mimicking the nacreous shells that allows upscaling for industrial processes.

New, high-strength and lightweight nacre-mimetic material applicable to large-scale industrial processes

Finland | Posted on March 24th, 2010

The materials are expected to be feasible in applications where lightweight but strong materials allow particular benefits, e.g. in telecommunication, aerospace applications, and vehicles.

Nacreous shell has attracted materials scientists for a long time, due to its lightweight but strong structure. Mimicking nacre, the new material consists of alternating inorganic nanoscale platelets which are glued by polymers, and the materials self-assemble spontaneously in a one-step process to form layered structures, using for example paper-making process, painting, and spreading.

The new invention is based on a deep understanding of self-assembly processes in material science, said Andreas Walther, PhD., and Academy Professor Olli Ikkala who lead the project. "We have used self-assemblies and hierarchies already long in other types of materials to achieve functional properties. A good example of self-assembly is given by proteins whose chains contain in a delicate manner the information how to assemble as functional structures."

Different nanocomposite materials have already been explored extensively. However, it has remained a challenge to achieve drastically improved properties or concepts that are easily upscalable for large-scale technological applications.

Lightweight and strong materials have a number of applications

The new material has attracted a wide interest. The properties are easily tunable. At present it shows a tensile modulus of 45 GPa, the tensile strength of 250 MPa, it has very low gas permeation, and it shows very good properties as a thermal shield upon exposed fire. The material has been developed based on initial funding of Academy of Finland, and continued by UPM, a global forest product company, who has also a patent pending on the concept.

"We believe that the material can be attractive for mobile technologies and even for flexible electronics as a support and barrier material," said Walther and Ikkala.

Upon further tailoring of the materials and the processes, applications related to vehicles and aerospace are expected to become feasible. The lightweight but strong materials can lead to energy savings.

Nature inspires novel high tech materials

The new material is an example of biomimetics, which aims to mimic the most attractive materials in nature, but in simpler terms.

The materials scientists are fascinated by the delicacy of natural materials. The properties have been developed due to the lengthy process of evolution and in some cases extraordinary properties relevant to technology can be identified. In addition to nacreous shells, the materials scientists explore for example mimics for silk, jaws, and bones.

The results have been published in Nano Letters (DOI: 10.1021/nl1003224)pubs.acs.org/doi/abs/10.1021/nl1003224

see also: www.technologyreview.com/computing/24828/page1/.

####

About Aalto University
Established in 2010, the Aalto University is a new university with centuries of experience. The Aalto University is a created from the merger of three Finnish universities: The Helsinki School of Economics, Helsinki University of Technology and The University of Art and Design Helsinki. The three schools of the Aalto University - the School of Economics, the School of Art and Design and the School of Science and Technology are all leading and renowned institutions in their respective fields and in their own right.

The combination of three universities opens up new possibilities for strong multi-disciplinary education and research. The new university's ambitious goal is to be one of the leading institutions in the world in terms of research and education in its own specialised disciplines.

For more information, please click here

Contacts:
Andreas Walther, PhD

+358 50 5113192

Olli Ikkala
Academy Professori

+358 50 4100454

Copyright © Aalto University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Composite Pipe Long Term Testing Facility February 10th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Composite Pipe Long Term Testing Facility February 10th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Making sense of metallic glass February 9th, 2016

Possible Futures

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

A fast solidification process makes material crackle February 8th, 2016

Academic/Education

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

COD Grad Begins Postdoctoral Fellow at Harvard University: Marsela Jorgolli's Passion for Physics Has Led to a Decade of Academic Research That Continues at Harvard University as a Postdoctoral Fellow February 2nd, 2016

Heriot-Watt's Institute of Photonics & Quantum Sciences uses the Deben Microtest 2 kN tensile stage to characterise ceramics and engineering plastics January 21st, 2016

Multiple uses for the JPK NanoWizard AFM system in the Smart Interfaces in Environmental Nanotechnology Group at the University of Illinois at Urbana-Champaign January 20th, 2016

Self Assembly

New type of nanowires, built with natural gas heating: UNIST research team developed a new simple nanowire manufacturing technique February 1st, 2016

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

Polymer nanowires that assemble in perpendicular layers could offer route to tinier chip components January 23rd, 2016

Nanodevice, build thyself: Researchers in Germany studied how a multitude of electronic interactions govern the encounter between a molecule called porphine and copper and silver surfaces January 18th, 2016

Materials/Metamaterials

Chemical cages: New technique advances synthetic biology February 10th, 2016

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

Making sense of metallic glass February 9th, 2016

Graphene decharging and molecular shielding February 8th, 2016

Announcements

Composite Pipe Long Term Testing Facility February 10th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Patents/IP/Tech Transfer/Licensing

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Joint Efforts by Iranian, Malaysian Scientists Produce Antibacterial Coatings for Isolated Areas February 4th, 2016

Silicon-based metamaterials could bring photonic circuits February 1st, 2016

Therapeutic Solutions International Licenses Dexosome Clinical Stage Cancer Immunotherapy Product From Gustave Roussy European Cancer Centre: FDA Cleared Immuno-Oncology Technology to Resume Clinical Development for Solid Tumor Patients January 27th, 2016

Automotive/Transportation

Canadian physicists discover new properties of superconductivity February 8th, 2016

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

An alternative to platinum: Iron-nitrogen compounds as catalysts in graphene January 28th, 2016

LC.300 Series Nanopositioning Controller from nPoint January 28th, 2016

Aerospace/Space

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

Scientists build a neural network using plastic memristors: A group of Russian and Italian scientists have created a neural network based on polymeric memristors -- devices that can potentially be used to build fundamentally new computers January 28th, 2016

Deep Space Industries teams with UTIAS Space Flight Laboratory to demonstrate autonomous spacecraft maneuvering: SFL and DSI demonstrate enabling technology for low-cost asteroid missions and constellations January 25th, 2016

Graphene composite may keep wings ice-free: Rice University develops conductive material to heat surfaces, simplify ice removal January 25th, 2016

Industrial

Nature Materials: Smallest lattice structure worldwide: 3-D lattice with glassy carbon struts and braces of less than 200 nm in diameter has higher specific strength than most solids February 3rd, 2016

New sensors to combat the proliferation of bacteria in very high-humidity environments January 23rd, 2016

Teijin to Participate in Nano Tech 2016 January 21st, 2016

Corrosion-Fighter Tesla NanoCoatings Pioneers 2x1 Wet-on-Wet Process January 20th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic