Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New, high-strength and lightweight nacre-mimetic material applicable to large-scale industrial processes

Abstract:
The Molecular Materials Research Group within the Department of Applied Physics in collaboration with VTT and Royal Institute of Technology shows the first example of light-weight but mechanically strong nanocomposite material mimicking the nacreous shells that allows upscaling for industrial processes.

New, high-strength and lightweight nacre-mimetic material applicable to large-scale industrial processes

Finland | Posted on March 24th, 2010

The materials are expected to be feasible in applications where lightweight but strong materials allow particular benefits, e.g. in telecommunication, aerospace applications, and vehicles.

Nacreous shell has attracted materials scientists for a long time, due to its lightweight but strong structure. Mimicking nacre, the new material consists of alternating inorganic nanoscale platelets which are glued by polymers, and the materials self-assemble spontaneously in a one-step process to form layered structures, using for example paper-making process, painting, and spreading.

The new invention is based on a deep understanding of self-assembly processes in material science, said Andreas Walther, PhD., and Academy Professor Olli Ikkala who lead the project. "We have used self-assemblies and hierarchies already long in other types of materials to achieve functional properties. A good example of self-assembly is given by proteins whose chains contain in a delicate manner the information how to assemble as functional structures."

Different nanocomposite materials have already been explored extensively. However, it has remained a challenge to achieve drastically improved properties or concepts that are easily upscalable for large-scale technological applications.

Lightweight and strong materials have a number of applications

The new material has attracted a wide interest. The properties are easily tunable. At present it shows a tensile modulus of 45 GPa, the tensile strength of 250 MPa, it has very low gas permeation, and it shows very good properties as a thermal shield upon exposed fire. The material has been developed based on initial funding of Academy of Finland, and continued by UPM, a global forest product company, who has also a patent pending on the concept.

"We believe that the material can be attractive for mobile technologies and even for flexible electronics as a support and barrier material," said Walther and Ikkala.

Upon further tailoring of the materials and the processes, applications related to vehicles and aerospace are expected to become feasible. The lightweight but strong materials can lead to energy savings.

Nature inspires novel high tech materials

The new material is an example of biomimetics, which aims to mimic the most attractive materials in nature, but in simpler terms.

The materials scientists are fascinated by the delicacy of natural materials. The properties have been developed due to the lengthy process of evolution and in some cases extraordinary properties relevant to technology can be identified. In addition to nacreous shells, the materials scientists explore for example mimics for silk, jaws, and bones.

The results have been published in Nano Letters (DOI: 10.1021/nl1003224)pubs.acs.org/doi/abs/10.1021/nl1003224

see also: www.technologyreview.com/computing/24828/page1/.

####

About Aalto University
Established in 2010, the Aalto University is a new university with centuries of experience. The Aalto University is a created from the merger of three Finnish universities: The Helsinki School of Economics, Helsinki University of Technology and The University of Art and Design Helsinki. The three schools of the Aalto University - the School of Economics, the School of Art and Design and the School of Science and Technology are all leading and renowned institutions in their respective fields and in their own right.

The combination of three universities opens up new possibilities for strong multi-disciplinary education and research. The new university's ambitious goal is to be one of the leading institutions in the world in terms of research and education in its own specialised disciplines.

For more information, please click here

Contacts:
Andreas Walther, PhD

+358 50 5113192

Olli Ikkala
Academy Professori

+358 50 4100454

Copyright © Aalto University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Tokyo Institute of Technology research: Antiaromatic molecule displays record electrical conductance July 19th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Nanoparticles could spur better LEDs, invisibility cloaks July 19th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Nanoparticles could spur better LEDs, invisibility cloaks July 19th, 2017

Possible Futures

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Tokyo Institute of Technology research: Antiaromatic molecule displays record electrical conductance July 19th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Academic/Education

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

The 2017 Winners for Generation Nano June 8th, 2017

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Self Assembly

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Nanotubes that build themselves April 14th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Most Complex Nanoparticle Crystal Ever Made by Design: Possible applications include controlling light, capturing pollutants, delivering therapeutics March 2nd, 2017

Materials/Metamaterials

Carbon displays quantum effects July 13th, 2017

Meniscus-assisted technique produces high efficiency perovskite PV films July 7th, 2017

ANU invention may help to protect astronauts from radiation in space July 3rd, 2017

Brookhaven Scientists Study Role of 'Electrolyte Gating' in Functional Oxide Materials July 3rd, 2017

Announcements

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Tokyo Institute of Technology research: Antiaromatic molecule displays record electrical conductance July 19th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Patents/IP/Tech Transfer/Licensing

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

Aculon Expands NanoProof® Product Line for Electronics Waterproofing Technology: With growing market opportunities Aculon Launches NanoProof® 8 with Push Through Connectivity™ and NanoProof® DAB a syringe application May 30th, 2017

NREL’s Advanced Atomic Layer Deposition Enables Lithium-Ion Battery Technology: May 10th, 2017

Forge Nano 2017: 1st Quarter Media Update April 20th, 2017

Automotive/Transportation

Nanotech Advances Future Mobile Devices and Wearable Technology July 5th, 2017

Leti’s Autonomous-Vehicle System Embedded in Infineon’s AURIX Platform: Leti’s Low-Power, Multi-Sensor System that Transforms Distance Data into Clear Information About the Driving Environment Will Be Demonstrated at ITS Meeting in Strasbourg, June 19-22 June 20th, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

GLOBALFOUNDRIES Launches 7nm ASIC Platform for Data Center, Machine Learning, and 5G Networks FX-7TM offering leverages the company’s 7nm: FinFET process to deliver best in class IP and Solutions June 13th, 2017

Aerospace/Space

National Space Society Governor Scott Pace Named to National Space Council as Executive Secretary July 18th, 2017

National Space Society Supports VP Pence's Call for Constant Low-Earth Orbit Human Presence Leading to the Settlement of Space July 13th, 2017

Thinking thin brings new layering and thermal abilities to the semiconductor industry: In a breakthrough for the semiconductor industry, researchers demonstrate a new layer transfer technique called "controlled spalling" that creates many thin layers from a single gallium nitride July 11th, 2017

ANU invention may help to protect astronauts from radiation in space July 3rd, 2017

Industrial

3-D-printed jars in ball-milling experiments June 29th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Carbodeon demonstrates NanoDiamond nickel coatings with enhanced tribological properties June 7th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project