Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > For One Tiny Instant, Physicists May Have Broken a Law of Nature

This image of a full-energy collision between gold ions shows the paths taken by thousands of subatomic particles produced during the impact.
This image of a full-energy collision between gold ions shows the paths taken by thousands of subatomic particles produced during the impact.

Abstract:
For a brief instant, it appears, scientists at Brook­haven National Laboratory on Long Island recently discovered a law of nature had been broken.

By Suzanne Taylor Muzzin

For One Tiny Instant, Physicists May Have Broken a Law of Nature

New Haven, CT | Posted on March 24th, 2010

Action still resulted in an equal and opposite reaction, gravity kept the Earth circling the Sun, and conservation of energy remained intact. But for the tiniest fraction of a second at the Relativistic Heavy Ion Collider (RHIC), physicists created a symmetry-breaking bubble of space where parity no longer existed.

Parity was long thought to be a fundamental law of nature. It essentially states that the universe is neither right- nor left-handed — that the laws of physics remain unchanged when expressed in inverted coordinates. In the early 1950s it was found that the so-called weak force, which is responsible for nuclear radioactivity, breaks the parity law. However, the strong force, which holds together subatomic particles, was thought to adhere to the law of parity, at least under normal circumstances.

Now this law appears to have been broken by a team of about a dozen particle physicists, including Jack Sandweiss, Yale's Donner Professor of Physics. Since 2000, Sandweiss has been smashing the nuclei of gold atoms together as part of the STAR experiment at RHIC, a 2.4-mile-circumference particle accelerator, to study the law of parity under the resulting extreme conditions.

The team created something called a quark-gluon plasma — a kind of "soup" that results when energies reach high enough levels to break up protons and neutrons into their constituent quarks and gluons, the fundamental building blocks of matter.

Theorists believe this kind of quark-gluon plasma, which has a temperature of four trillion degrees Celsius, existed just after the Big Bang, when the universe was only a microsecond old. The plasma "bubble" created in the collisions at RHIC lasted for a mere millionth of a billionth of a billionth of a second, yet the team hopes to use it to learn more about how structure in the universe — from black holes to galaxies — may have formed out of the soup.

When the gold nuclei, traveling at 99.999% of the speed of light, smashed together, the plasma that resulted was so energetic that a tiny cube of it with sides measuring about a quarter of the width of a human hair would contain enough energy to power the entire United States for a year.

It was the equally gargantuan magnetic field produced by the plasma — the strongest ever created — that alerted the physicists that one of nature's laws might have been broken.

"A very interesting thing happened in these extreme conditions," Sandweiss says. "Parity violation is very difficult to detect, but the magnetic field in conjunction with parity violation gave rise to a secondary effect that we could detect."

Sandweiss and the team — which includes Yale physics research scientists Evan Finch, Alexei Chikanian and Richard Majka — found that quarks of a like sign moved together: Up quarks moved along the magnetic field lines, while down quarks traveled against them. That the quarks could tell the difference in directions suggested to the researchers that symmetry had been broken.

The results were so unexpected that Sandweiss and his colleagues waited more than a year to publish them, spending that time searching for an alternative explanation. The physicist is still quick to point out that the effect only suggests parity violation — it doesn't prove it — but the STAR collaboration has decided to open up the research to scrutiny by other physicists.

"I think it's a real effect, but we'll know more in the upcoming years," Sandweiss says.

Next, the team wants to test the result by running the experiment at lower collision energies to see if the apparent violation disappears when there is not enough energy to create the necessary extreme conditions.

If the effect proves to be real, it could help scientists understand a similar asymmetry that led to one of physics' most fundamental mysteries — namely, why the universe is dominated by ordinary matter today when equal amounts of matter and antimatter were created by the Big Bang.

Sandweiss, for one, is looking forward to some answers. "I'd really like to see this evolve and find out exactly what's going on," he says.

####

About Yale University
Yale University comprises three major academic components: Yale College (the undergraduate program), the Graduate School of Arts and Sciences, and the professional schools. In addition, Yale encompasses a wide array of centers and programs, libraries, museums, and administrative support offices. Approximately 11,250 students attend Yale.

For more information, please click here

Contacts:
Suzanne Taylor Muzzin
203-432-8555

Copyright © Yale University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oxford Instruments’ Triton Cryofree dilution refrigerator selected by Oxford University for developing scalable quantum nanodevices September 2nd, 2015

JEOL Introduces New Best-in-Class Field Emission SEM September 2nd, 2015

TCL and QD Vision Demonstrate the Future of Wide Color Gamut Television at IFA: Color IQ Based Display is the First Commercially-Branded Television to Present Over 90% of ITU Rec. 2020 Color Gamut September 2nd, 2015

Atomic Force Microscopes from Asylum Research Guide the Development of Thin Film Deposition and Etch Processes September 2nd, 2015

Physics

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

Seeing quantum motion August 30th, 2015

Possible Futures

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Sediment dwelling creatures at risk from nanoparticles in common household products August 13th, 2015

Harris & Harris Group Reports Financial Statements as of June 30, 2015, and Announces a Stock Repurchase Program August 10th, 2015

Molecular trick alters rules of attraction for non-magnetic metals August 5th, 2015

Discoveries

For 2-D boron, it's all about that base: Rice University theorists show flat boron form would depend on metal substrates September 2nd, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

Announcements

For 2-D boron, it's all about that base: Rice University theorists show flat boron form would depend on metal substrates September 2nd, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic