Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A More Sensitive Sensor

Abstract:
Tel Aviv University pioneers sensor technology for industry using nano-sized carbon tubes

A More Sensitive Sensor

Israel | Posted on March 23rd, 2010

Electro-mechanical sensors tell the airbag in your car to inflate and rotate your iPhone screen to match your position on the couch. Now a research group of Tel Aviv University's Faculty of Engineering is making the technology even more useful.

Prof. Yael Hanein, Dr. Slava Krylov and their doctoral student Assaf Ya`akobovitz have set out to make sensors for microelectromechanical systems (MEMS) significantly more sensitive and reliable than they are today. And they're shrinking their work to nano-size to do it.

More sensitive sensors means more thrilling videogames, better functioning prosthetic limbs, cars that can detect collisions and dangerous turns before they occur, and ¯ in the defense industry ¯ missiles that can reach a target far more precisely.

Miniscule earthquakes

Able to "feel" and sense the movement of individual atoms, the researchers' new MEMS sensing device uses small carbon tubes, nano in size ¯ about one-billionth of a meter long. Creating these tiny tubes using a process involving methane gas and a furnace, Prof. Hanein has developed a method whereby they arrange themselves on a surface of a silicon chip to accurately sense tiny movements and changes in gravity.

In the device developed by Prof. Hanein's and Dr. Krylov's team, a very tiny nanometer scale tube is added onto much larger micrometer-scale MEMS devices. Small deformities in the crystal structure of the tubes register a change in the movement of the nano object, and deliver the amplitude of the movement through an electrical impulse. "It's such a tiny thing," she says. "But at our resolution, we are able to feel the motion of objects as small as a few atoms."

"Originally developed mainly for the car industry, miniature sensors are all around us," says Prof. Hanein. "We've been able to fabricate a new device where the nano structures are put onto a big surface ¯ and they can be arranged in a process that doesn't require human intervention, so they're easier to manufacture. We can drive these nano-sensing tubes to wherever we need them to go, which could be very convenient and cost-effective across a broad spectrum of industries."

Until now, Prof. Hanein explains, the field of creating sensors for nanotechnology has been primarily based on manual operation requiring time-consuming techniques. Prof. Hanein and her team have developed a sensitive but abundant and cost-effective material that can be coated onto prosthetic limbs, inserted into new video games for more exciting play, and used by the auto industry to detect a potential collision before it becomes fatal.

The technology has been presented in a number of peer-reviewed journals including the Journal of Micromechanics and Micro-engineering; at a MEMS conference in Hong Kong; and at a nano conference in Tirol, Austria in March.

Markets in motion

The market for MEMS devices, which take mechanical signals and convert them into electrical impulses, is estimated to be worth billions. "The main challenge facing the industry today is to make these basic sensors a lot more sensitive, to recognize minute changes in motion and position. Obviously there is a huge interest from the military, which recognizes the navigation potential of such technologies, but there are also humanitarian and recreational uses that can come out of such military developments," Prof. Hanein stresses. More sensitive MEMS could play a role in guided surgery, for example.

The TAU team is working on optimizing the system, hoping to make it at least 100 times more sensitive than any sensor device on the market today.

####

About Tel Aviv University
Located in Israel's cultural, financial and industrial heartland, Tel Aviv University is the largest university in Israel and the biggest Jewish university in the world. It is a major center of teaching and research, comprising nine faculties, 106 departments, and 90 research institutes. Its origins go back to 1956, when three small education units - The Tel Aviv School of Law and Economics, an Institute of Natural Sciences, and an Institute of Jewish Studies - joined together to form the University of Tel Aviv.

For more information, please click here

Contacts:

Copyright © Tel Aviv University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

NEMS

Leti Scientists Participating in Sessions on Med Tech, Automotive Technologies, MEMS, Si-photonics and Lithography at SEMICON Europa: Teams also Will Demonstrate Technology Advances in Telecom, Data Fusion, Energy, Silicon Photonics and 3D Integration October 18th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Nano-photonics meets nano-mechanics: Controlling on-chip nano-optics by graphene nano-opto-mechanics January 22nd, 2016

Mechanical quanta see the light January 20th, 2016

Possible Futures

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Academic/Education

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

The 2017 Winners for Generation Nano June 8th, 2017

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Bar-Ilan University to set up quantum research center May 1st, 2017

MEMS

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Leti Coordinating Project to Adapt Obstacle-Detection Technology Used in Autonomous Cars for Portable and Wearable Systems: INSPEX to Combine Knowhow of Nine European Organizations to Create Portable and Wearable Spatial-Exploration Systems February 2nd, 2017

Manufacturing platform makes intricate biocompatible micromachines January 7th, 2017

Chip Technology

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

GLOBALFOUNDRIES®, ON Semiconductor Deliver the Industry’s Lowest Power Bluetooth® Low Energy SoC Family: 55nm LPx RF-enabled platform, with SST’s highly reliable embedded SuperFlash®, provides low power and cost for IoT and “Connected” Health and Wellness Devices June 19th, 2017

New prospects for universal memory -- high speed of RAM and the capacity of flash: Thin films created at MIPT could be the basis for future development of ReRAM June 17th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Nanotubes that build themselves April 14th, 2017

Nanoelectronics

GLOBALFOUNDRIES on Track to Deliver Leading-Performance 7nm FinFET Technology: New 7LP technology offers 40 percent performance boost over 14nm FinFET June 13th, 2017

Seeing the invisible with a graphene-CMOS integrated device June 6th, 2017

IBM Research Alliance Builds New Transistor for 5nm Technology: Less than two years since announcing a 7nm test chip, scientists have achieved another breakthrough June 5th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Announcements

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project