Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Taming the wild phonon

Edwin L. Thomas, head of the Department of Materials Science and Engineering and the Morris Cohen Professor of Materials Science and Engineering, uses a Scanning Acoustic Microscope in MIT's Laboratory for Advanced Materials. Photo: Patrick Gillooly
Edwin L. Thomas, head of the Department of Materials Science and Engineering and the Morris Cohen Professor of Materials Science and Engineering, uses a Scanning Acoustic Microscope in MIT's Laboratory for Advanced Materials. Photo: Patrick Gillooly

Abstract:
‘Particles' of heat are everywhere, and usually a nuisance, but newly designed materials could help put them to good use.

By David L. Chandler, MIT News Office

Taming the wild phonon

Cambridge, MA | Posted on March 22nd, 2010

Researchers at MIT and elsewhere have succeeded in creating a synthetic crystal that can very effectively control the transmission of heat — stopping it in its tracks and reflecting it back. This advance could lead to insulating materials that could block the escape of heat more effectively than any present insulator.

This crystal structure was built using alternating layers of silicon dioxide (the basis of the dielectric layers in most microchips) and a polymer material. The resulting two-component material successfully reflected phonons — vibrational waves that are the carriers of ordinary heat or sound, depending on their frequency. In this case, the phonons were in the gigahertz range — in other words, low-level heat.

Edwin L. Thomas, head of MIT's Department of Materials Science and Engineering and the Morris Cohen Professor of Materials Science and Engineering, was a co-author of a new paper, published on March 10 in the journal Nano Letters, that describes this creation of phononic crystals in the hypersonic range (that is, above the frequency range of sound, and thus can be considered in the range of heat).

Phonons may sometimes be thought of as particles, and sometimes as vibrational waves, analogous to the dual wave and particle nature of light. Physically, the phonons are manifested as a wave of density variation passing through a material, like the wave of compression that travels along a child's Slinky toy when you stretch it out and give one end a shove.

Thomas says phonons, which exist in all solids, are usually a nuisance that must be disposed of with cooling systems. They have been "denigrated and ignored, but they could be the future star attraction if we can train them to do tricks for us." Among other things, this could lead to highly efficient ways of scavenging heat that is now wasted, in everything from computers and cell phones to cars and power plants, in order to produce electricity. This latest research, funded by the National Science Foundation and its German equivalent, DFG, is still at the level of simple tricks, he says: "It's a step on the path."

Phonons can be controlled through manufactured crystal-like structures. In this latest research, Thomas and his colleagues in Germany and Greece fabricated a "one-dimensional periodic" crystal structure, which means that although the material has three dimensions, its regularly varying molecular structure — in this case, alternating layers of two different materials — only varies along one direction, like a stack of vanilla and chocolate ice cream where the layers alternate. So if you look at a single layer, there's just a uniform color, but if you drill through the stack, you find regularly alternating layers. When the spacing between similar layers matches the wavelength of the phonons, those phonons are blocked and reflected back.

The phonons that are reflected from this newly developed material are in the range of low-frequency heat (since anything above absolute zero, or minus 273 degrees Celsius, is considered heat, which is just due to the movement of vibrational waves). Hence, this reflector currently only works at sub-freezing temperatures. Further work on decreasing the thickness of the layers could bring them closer to the range of a theoretical "perfect insulator" that could block heat of a certain frequency range in an ordinary room-temperature environment. And this could open up a host of potential applications.

No material is ever going to be perfect, but even a material that reflects back a very high percentage of heat could be a big improvement over present insulators. For example, a shell of such material could be used to maintain the temperature in a package of delicate research instruments in a frigid environment.

How far off are such applications? "It's close, if you don't worry about price," Thomas says — which may be the case for some uses such as spacecraft, or instruments deployed in Antarctica. And as the technology develops and as production gets scaled up, prices could eventually come down far enough to enable more widespread applications.

Ihab El-Kady, a researcher at Sandia National Laboratories, says that while much current research on phonons involves the creation of two- or three-dimensional crystals, which may have greater long-term applications, there are some advantages to studying one-dimensional crystals as Thomas and his co-authors did in this case. "One-D systems are still preferable for their ease of fabrication, and can offer particular insight into the basic physical mechanics of phononic crystals," he says. "In that light, this paper represents a novel and insightful tool" for analyzing fundamental wave phenomena, as well as the interactions between phonons and other particles such as photons.

Most early work on phonons dealt with sound-wave frequencies, which can be manipulated using larger crystal structures, but advances in nanotechnology have made it possible to create materials with structures small enough to handle the high-frequency, short-wavelength phonons associated with heat.

The best way to understand the enormous potential of devices that control phonons is by comparing them to devices that control electrons and photons, says Thomas. He explains that our growing understanding of electrons and photons — which carry electricity and light, respectively — has led to decades of technological innovation, including the invention of lasers, transistors, photovoltaic cells and microchips. These basic inventions, in turn, made possible most of the devices that define modern life, including cell phones, computers, DVD players and flat-screen TVs. Now there are a lot of people trying to understand phonons, he says, which could lead to a similar proliferation of new — and impossible to predict — technologies.

As a result, Thomas says, the field of phononics "has the potential to rocket off."

####

About Massachusetts Institute of Technology
The mission of MIT is to advance knowledge and educate students in science, technology and other areas of scholarship that will best serve the nation and the world in the 21st century — whether the focus is cancer, energy, economics or literature.

For more information, please click here

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

European roadmap for graphene science and technology published February 25th, 2015

Dendrite eraser: New electrolyte rids batteries of short-circuiting fibers: Solution enables a battery with both high efficiency & current density February 24th, 2015

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

Academic/Education

NanoTecNexus Launches New App for Learning About Nanotechnology—STEM Education Project Spearheaded by Interns February 26th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

KIT Increases Commitment in Asia: DAAD Funds Two New Projects: Strategic Partnerships with Chinese Universities and Communi-cation Technologies Network February 22nd, 2015

Minus K Technology Announces Its 2015 Vibration Isolator Educational Giveaway to U.S. Colleges and Universities February 18th, 2015

Discoveries

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Materials/Metamaterials

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Announcements

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE