Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanoparticles Cooperate to Detect and Treat Tumors

Abstract:
If one nanoparticle is good, two may be better, especially when they are designed to cooperate with each other to diagnose and treat cancer. That finding comes from work led by Michael Sailor, Ph.D., a member of the Center of Nanotechnology for Treatment, Understanding, and Monitoring of Cancer at the University of California, San Diego, and published in the journal Advanced Materials.

Nanoparticles Cooperate to Detect and Treat Tumors

Bethesda, MD | Posted on March 22nd, 2010

Dr. Sailor and his colleagues, including fellow Center member Erkki Ruoslahti, M.D., Ph.D., of the Burnham Institute for Medical Research at the University of California, Santa Barbara, and Sangeeta Bhatia of the Howard Hughes Medical Institute and a member of the MIT-Harvard Center for Cancer Nanotechnology Excellence, have had success developing multifunctional nanoparticles that incorporate several functions - imaging and drug delivery, for example - in one nanoparticle. However, the investigators felt that fitting multiple functions into one nanoparticle was sometimes problematic in terms of getting the right combination of properties needed to fulfill two or more missions inside the body.

For this study, Dr. Sailor and his collaborators decided to create two nanoparticles. One, a polymer-coated gold nanorod, was designed to accumulate in tumors and become warm when irradiated with near infrared light. The second nanoparticle, made of a thermally responsive lipid mixture, was designed to release a drug payload only when encountering cells warmed to 45° C, that is, only where the first nanoparticle had heated tumors.

After injecting the two nanoparticles together into tumor-bearing mice, the investigators illuminated tumors with near infrared light. They then observed that the drug-containing nanoparticles began accumulating and releasing their drug around the tumors. More importantly, the researchers found that the drug killed more cells when the two nanoparticles were used in combination than it did when administered alone or when just the drug-loaded nanoparticle was used. Dr. Sailor's team also observed that subsequent tumor growth was significantly impaired, while the treated mice displayed few adverse side effects from the therapy.

This work, which is detailed in a paper titled, "Cooperative Nanoparticles for Tumor Detection and Photothermally Triggered Drug Delivery," was supported by the NCI Alliance for Nanotechnology in Cancer, a comprehensive initiative designed to accelerate the application of nanotechnology to the prevention, diagnosis, and treatment of cancer. An abstract of this paper is available at the journal's Web site.

View abstract: www3.interscience.wiley.com/journal/123191104/abstract?CRETRY=1&SRETRY=0

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Possible Futures

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NNCO and Museum of Science Fiction to Collaborate on Nanotechnology and 3D Printing Panels at Awesome Con May 19th, 2015

Quantum 'gruyères' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

Academic/Education

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GW’s new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

Nanomedicine

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Announcements

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Nanobiotechnology

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project